A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining

Author(s):  
S.J. Zhang ◽  
S. To ◽  
G.Q. Zhang ◽  
Z.W. Zhu
Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Chen-Yang Zhao ◽  
Chi-Fai Cheung ◽  
Wen-Peng Fu

In this paper, an investigation of cutting strategy is presented for the optimization of machining parameters in the ultra-precision machining of polar microstructures, which are used for optical precision measurement. The critical machining parameters affecting the surface generation and surface quality in the machining of polar microstructures are studied. Hence, the critical ranges of machining parameters have been determined through a series of cutting simulations, as well as cutting experiments. First of all, the influence of field of view (FOV) is investigated. After that, theoretical modeling of polar microstructures is built to generate the simulated surface topography of polar microstructures. A feature point detection algorithm is built for image processing of polar microstructures. Hence, an experimental investigation of the influence of cutting tool geometry, depth of cut, and groove spacing of polar microstructures was conducted. There are transition points from which the patterns of surface generation of polar microstructures vary with the machining parameters. The optimization of machining parameters and determination of the optimized cutting strategy are undertaken in the ultra-precision machining of polar microstructures.


2014 ◽  
Vol 907 ◽  
pp. 277-289 ◽  
Author(s):  
Eckart Uhlmann ◽  
Gerhard Häusler ◽  
Christian Röttinger ◽  
Evelyn Olesch ◽  
Christian Faber ◽  
...  

In this paper, current results of a research project combining ultra precision machining and optical measurement are presented. The goal is to improve the quality of specular freeform surfaces manufactured by ultra precision slow slide servo turning by running appropriate correction cycles on the basis of machine integrated measurements. These measurements are conducted using the principle of Phase Measuring Deflectometry (PMD) in order to optically acquire full-field 3D-height data. For this purpose, a special setup the so called Mini PMD that can be operated within the limited installation space of an ultra precision machine tool has been designed and implemented. Results of machine integrated measurements of a specular non-rotational symmetrical surface are presented. Furthermore, using Mini PMD and a rotationally symmetric test surface, a complete correction cycle is demonstrated without the necessity of taking the workpiece off the machine for measurement.


2014 ◽  
Vol 543-547 ◽  
pp. 4010-4013
Author(s):  
Yao Chen ◽  
Xiu Xia Liang ◽  
Shuang Qiu

Resin concrete generally has good mechanical properties, excellent thermal stability and great vibration resistance, the model of the ultra-precision machining center bed is established to study the thermal stability of the resin concrete using virtual reality and collaborative simulation technology based on Pro/E and ANSYS Workbench. The main factors that affect the machine tool bed thermal deformation were found through analyzing the deformation results and the materials and restrain conditions were optimized. The results proved that the optimized machine tool bed has good thermal stability and theoretical basis was provided to improve the thermal stability of the ultra-precision machining centers.


Sign in / Sign up

Export Citation Format

Share Document