scholarly journals An Investigation of the Cutting Strategy for the Machining of Polar Microstructures Used in Ultra-Precision Machining Optical Precision Measurement

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Chen-Yang Zhao ◽  
Chi-Fai Cheung ◽  
Wen-Peng Fu

In this paper, an investigation of cutting strategy is presented for the optimization of machining parameters in the ultra-precision machining of polar microstructures, which are used for optical precision measurement. The critical machining parameters affecting the surface generation and surface quality in the machining of polar microstructures are studied. Hence, the critical ranges of machining parameters have been determined through a series of cutting simulations, as well as cutting experiments. First of all, the influence of field of view (FOV) is investigated. After that, theoretical modeling of polar microstructures is built to generate the simulated surface topography of polar microstructures. A feature point detection algorithm is built for image processing of polar microstructures. Hence, an experimental investigation of the influence of cutting tool geometry, depth of cut, and groove spacing of polar microstructures was conducted. There are transition points from which the patterns of surface generation of polar microstructures vary with the machining parameters. The optimization of machining parameters and determination of the optimized cutting strategy are undertaken in the ultra-precision machining of polar microstructures.

2013 ◽  
Vol 552 ◽  
pp. 575-585 ◽  
Author(s):  
L.B. Kong ◽  
C.H. Mak ◽  
C.F. Cheung ◽  
Wing Bun Lee ◽  
S. To ◽  
...  

Plasticfilms with Embossed Micro-Structured Patterns have been Widely Used Inbacklight Guide Panels. the Mass Production of these Films Demands Forultra-Precision Roller Embossing of Micro-Structured Patterns on Plastic Filmsby Precision Pattern Rollers. due to the Heavy Workload and High Precisionrequirements, Ultra-Precision Rollers with Microstructures are very Difficultto be Machined in the Level of Submicrometer Form Accuracy and Surface Finishin Nanometer Range. this Paper Presents Theoretical and Experimental Studies Ofultra-Precision Machining of Precision Rollers with Microstructures. Themachining Mechanism for Precision Roller is Firstly Explained, and Hence Astudy of Effect of Cutting Strategies on Surface Generation in Ultra-Precisionmachining of Micro-Structured Pattern Rollers is Presented. this Includes Thestudy of Different Cutting Trajectories, Length-to-Diameter Ratio of Therollers, Mounting Method for the Rollers, the Number of Cuts in the Formationof the Micro-Structured Patterns, as well as the Time Budgeting for Adoptingdifferent Cutting Trajectories in Ultra-Precision Machining of Micro-Structuredpattern Rollers. the Results of the Study Provide an Important Means Forenhancing the Surface Quality and Optimizing the Time for Machining Precisionrollers.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 573
Author(s):  
Zhang ◽  
Guo ◽  
Chen ◽  
Fu ◽  
Zhao

The surface generation mechanism of the Cu alloys in ultra-precision diamond turning is investigated by both simulation and experimental methods, where the effects of the cutting parameters on the surface characteristics are explored, including the workpiece spindle speed, the cutting depth, the feed rate and the nose radius of the diamond tool. To verify the built model, the cutting experiments are conducted at selected parameters, where the causes of the error between the simulation and the machining results are analyzed, including the effects of the materials microstructure and the diamond tool wear. In addition, the nanometric surface characteristics of the Cu alloys after the diamond turning are identified, including the finer scratching grooves caused by the tool wear, the formation of the surface burs and the adhesion of graphite. The results show that the built model can be basically used to predict the surface topography for the selection of the appropriate machining parameters in the ultra-precision diamond turning process.


2014 ◽  
Vol 625 ◽  
pp. 742-747
Author(s):  
C.H. Mak ◽  
C.F. Cheung ◽  
M.J. Ren ◽  
L.B. Kong ◽  
S. To

This paper presents a study of cutting strategies on the surface generation in single-point diamond turning of micro V-groove patterns on precision roller drums. An aluminium precision roller drum with a diameter 250mm and 100 long was diamond turned with a V-groove pattern. A series of cutting experiments were designed to study the effect of the variation of various cutting parameters and cutting tool paths on the surface quality in diamond turning of the precision roller drum. The parameters under investigation included the depth of cut, number of steps and the depth for each cut when diamond turning V-grooves on the cylindrical surface of a workpiece. The measurement result indicates that the surface quality of V-grooves machined on the precision roller drums is affected by cutting strategies. The optimal cutting strategy for machining a V-groove pattern on a precision drum with 5µm depth was obtained.


2004 ◽  
Vol 471-472 ◽  
pp. 816-820
Author(s):  
Yong Da Yan ◽  
Shen Dong ◽  
T. Sun

This study aimed to gain an in-depth understanding of the features of AFM micro probe nanomachining. With the aid of the orthogonal test analysis and synthesis method of point rating, factors of influencing the cutting process: the perpendicular load, the feed amount and the cutting speed, were analyzed. The study revealed that the feed amount and the perpendicular load had greater effect on the surface quality and machining efficiency than the cutting speed. The results were also compared with the conventional ultra-precision machining. The optimal machining parameters suitable for two application fields were achieved. This method is a novel and feasible method to perform the nanomachining.


2015 ◽  
Vol 44 (1) ◽  
pp. 48-55 ◽  
Author(s):  
M.P. Jenarthanan ◽  
R. Jeyapaul

Purpose – The purpose of this paper is to analyse and optimise the machinability behaviour of Carbon Fibre Reinforced Polymer (CFRP) composites with multiple performance characteristics using the Taguchi method with fuzzy logic. Design/methodology/approach – A multi-response performance index (MRPI) was used for optimisation. The machining parameters, viz., tool geometry (helix angle of the endmill cutter), spindle speed, feed rate and depth of cut, were optimised with consideration of multiple performance characteristics, viz., machining force and material removal rate. Findings – The results from confirmation runs indicated that the determined optimal combination of machining parameters improved the performance of the machining process. Originality/value – The machinability behaviour of CFRP composites during milling of CFRP composites using Taguchi method with fuzzy logic has not been previously analysed.


Author(s):  
Sourabh Paul ◽  
PP Bandyopadhyay ◽  
S Paul

A lot of research has been undertaken in the area of conventional machining to study the effect of process parameters, tool geometry, machining environment and so on on machinability. But only recently, the research community has started analysing the carbon footprint of manufacturing processes. But very few articles could be located that attempted simultaneous minimisation of specific cutting energy and back force over a wide domain of process and tool-geometric parameters. This article has experimentally studied the effect of variation in depth of cut, feed, nose radius and tool geometry on simultaneous minimisation of specific cutting energy and back force while turning AISI 1060 steel with uncoated carbide inserts under dry machining environment. Minimisation of specific cutting energy and back force as individual criterion leads to conflicting choice of machining parameters. A combined criterion based on specific cutting energy and back force has been defined and for the minimisation of the same, cutting tools with positive rake need to be used, with high feed and moderate depth of cut.


Sign in / Sign up

Export Citation Format

Share Document