A novel robust Gaussian filtering method for the characterization of surface generation in ultra-precision machining

2006 ◽  
Vol 30 (4) ◽  
pp. 421-430 ◽  
Author(s):  
Huifen Li ◽  
C.F. Cheung ◽  
X.Q. Jiang ◽  
W.B. Lee ◽  
S. To
Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Chen-Yang Zhao ◽  
Chi-Fai Cheung ◽  
Wen-Peng Fu

In this paper, an investigation of cutting strategy is presented for the optimization of machining parameters in the ultra-precision machining of polar microstructures, which are used for optical precision measurement. The critical machining parameters affecting the surface generation and surface quality in the machining of polar microstructures are studied. Hence, the critical ranges of machining parameters have been determined through a series of cutting simulations, as well as cutting experiments. First of all, the influence of field of view (FOV) is investigated. After that, theoretical modeling of polar microstructures is built to generate the simulated surface topography of polar microstructures. A feature point detection algorithm is built for image processing of polar microstructures. Hence, an experimental investigation of the influence of cutting tool geometry, depth of cut, and groove spacing of polar microstructures was conducted. There are transition points from which the patterns of surface generation of polar microstructures vary with the machining parameters. The optimization of machining parameters and determination of the optimized cutting strategy are undertaken in the ultra-precision machining of polar microstructures.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 336 ◽  
Author(s):  
Hailong Wang ◽  
Tao Zhang ◽  
Sujuan Wang ◽  
Suet To

Aluminum alloy 6061(Al6061), an Al-Mg-Si alloy, is a precipitation-hardened alloy. The generation of precipitate affects its mechanical properties, and induces a worse surface finish during diamond cutting. The friction coefficients of the tool-chip and tool-workpiece interfaces influence temperature rise, and are therefore important predictors of tool wear and surface integrity during the diamond cutting of Al6061. This study investigated the relationship between precipitate generation and the friction coefficients of Al6061. Groups of experiments were conducted to study the influence of temperature and heating time on the number of precipitates and the friction coefficients. The results show that the generation of AlFeSi particles induces cracks, scratch marks and pits on diamond-machined Al6061 and affects the cutting forces. Moreover, the variation trend of the friction coefficient of Al6061 under different heating conditions agrees well with that of the number of AlFeSi particles. This implies that, during ultra-precision machining of precipitation-hardened alloys, cutting-induced heat causes precipitates to form on the chips and machined surface, changing their material properties. This affects the tool-workpiece and tool–chip contact conditions and the mechanisms of chip formation and surface generation in ultra-precision machining.


2012 ◽  
Vol 516 ◽  
pp. 293-298 ◽  
Author(s):  
Jen Osmer ◽  
Ralf Gläbe ◽  
Ekkard Brinksmeier

For the replication of optical glass or plastic components moulding inserts with surface roughness in the nanometre range and form accuracy in the micron or sub-micron range are needed. Despite these requirements the applied moulding insert material has to suit further needs like high temperature stability and resistivity against abrasive and chemical wear. To satisfy the specific requirements of replication processes steel alloys can be heat treated in a way to meet these demands. Unfortunately, these steel alloys cannot be machined with single crystal diamond tools because catastrophic diamond tool wear occurs. In recent years good progress in the field of ultra precision machining of steel has been made by nitrocarburizing the steel alloy. This leads to a sub-surface compound layer which is diamond machinable with surface roughness Sa < 10 nm and reduced diamond tool wear. But the ultra precision machining of these nitrocarburized steels introduces new challenges caused by the high hardness of the compound layer. Typical values are about 1200HV0.025. Therefore, this paper presents results from ultra precision machining processes focusing on the material behaviour during the cutting process. Influences of depth of cut and material composition on the surface generation can be found by evaluating chip formation and the resulting chips. Furthermore, the sub-surface of ultra precision machined steels is characterized by metallographic analysis to evaluate the influence of the nitrocarburizing process on ultra precision machining. In conclusion this paper presents the results for a deeper understanding of the material removal mechanisms in ultra precision machining of nitrocarburized steels.


Sign in / Sign up

Export Citation Format

Share Document