Improving machined surface texture in avoiding five-axis singularity with the acceptable-texture orientation region concept

Author(s):  
Zhiwei Lin ◽  
Jianzhong Fu ◽  
Hongyao Shen ◽  
Guanhua Xu ◽  
Yangfan Sun
2009 ◽  
Vol 75 (12) ◽  
pp. 1459-1463 ◽  
Author(s):  
Akira HAYASHI ◽  
Yoshikazu KOBAYASHI ◽  
Kenji SHIRAI ◽  
Yasuhiko HARA

Author(s):  
Barnabás Zoltán Balázs ◽  
Márton Takács

Micro-milling is one of the most essential technologies to produce micro components, but due to the size effect, it has many special characteristics and challenges. The process can be characterised by strong vibrations, relatively large run-out and tool deformation, which directly affects the quality of the machined surface. This paper deals with a detailed investigation of the influence of cutting parameters on surface roughness and on the special characteristics of micro-milled surfaces. Several systematic series of experiments were carried out and analysed in detail. A five-axis micromachining centre and a two fluted, coated carbide micro-milling tool with a diameter of 500 µm were used for the tests. The experiments were conducted on AISI H13 hot-work tool steel and Böhler M303 martensitic corrosion resistance steel with a hardness of 50 HRC in order to gain relevant information of machining characteristics of potential materials of micro-injection moulding tools. The effect of the cutting parameters on the surface quality and on the ratio of Rz/ Ra was investigated in a comprehensive cutting parameter range. ANOVA was used for the statistical evaluation. A novel method is presented, which allows a detailed analysis of the surface profile and repetitions, and identify the frequencies that create the characteristic profile of the surface. The procedure establishes a connection between the frequencies obtained during the analysis of dynamics (forces, vibrations) of the micro-milling process and the characterising repetitions and frequencies of the surface.


Procedia CIRP ◽  
2015 ◽  
Vol 33 ◽  
pp. 251-256 ◽  
Author(s):  
Motochika Shimizu ◽  
Hiroshi Sawano ◽  
Hayato Yoshioka ◽  
Hidenori Shinno

Author(s):  
Shigehiko Sakamoto ◽  
Atsushi Yokoyama ◽  
Kazumasa Nakayasu ◽  
Toshihiro Suzuki ◽  
Shinji Koike

Abstract The establishment of international standards for 5-axis control machining centers has been supported by the high interest of each country. Internationally, various accuracy inspection methods have been proposed and widely discussed. Accuracy measuring devices for these purposes have also been proposed. In 2014, inspection methods for 5-axis machines were published in ISO 10791-6 and 10791-7. In this research, we propose a test method to process 9 square faces as a new accuracy evaluation method. We simulate the influence of assembly error by the proposed square 3 × 3 machining method on the machined surface. By processing 9 square faces with different tool angle on the same plane, it was possible to evaluate the influence of assembly errors in the 5-axis machining center on the machined surface. Nine surfaces machined by the square 3 × 3 processing method cause differences in surface height due to alignment errors. In addition, nine machined surfaces become all diagonal not parallelism. The alignment errors of the 5-axis machining center is identified by evaluating the orientation of the machined surfaces. Specifically, we propose a newly method to measure the height difference of nine surfaces. Then, the possibility of identifying the alignment error of the 5-axis machining center using the measurement results is shown.


Author(s):  
C. G. Jensen ◽  
J. K. Hill ◽  
K. A. White

Abstract Engineers and designers use a wide variety of curve and surface formulations to describe products. The process of producing the physical shape of these products has remained essentially unchanged for many years. Traditionally, the process of finish surface machining has been error prone and inefficient due in large part to the mathematical basis used to control the positioning, orientation and movement of cutting tools in five-axis machining centers. This paper presents swept silhouette curvature matching algorithms for positioning and orienting a cutter such that tool and surface curvatures match. Formulations are given for both flat and filleted end mill cutters. The benefits of curvature matching are: reduction of local machining errors, reduction or elimination of grinding of the finished machined surface, and the improvement of machine tool efficiency. Examples are given that compare curvature matching to traditional machining methods. The paper concludes by discussing current research into a priori gouge detection methods based on intersection contact between the cutting tool and the design surface or the lower tolerance-bound offset surface to the design surface. An a priori gouge detection algorithm is necessary for the development of optimal tool motion and the reduction of time spent in tool path editing and verification. Techniques involving collinear normals, Bézier clipping, triangulation, normal intersection and swept volumes are suggested as techniques for examining the positional and translational tool gouge problem.


Author(s):  
Zongze Li ◽  
Ryuta Sato ◽  
Keiichi Shirase

Abstract Motion error of machine tool feed axes influences the machined workpiece accuracy. However, the influences of each error sources are not identical; some errors do not influence the machined surface although some error have significant influences. In addition, five-axis machine tools have more error source than conventional three-axis machine tools, and it is very tough to predict the geometric errors of the machined surface. This study proposes a method to analyze the relationships between the each error sources and the error of the machined surface. In this study, a kind of sphere-shaped workpiece is taken as a sample to explain how the sensitivity analysis makes sense in ball-end milling. The results show that the method can be applied for the axial errors, such as motion reversal errors, to make it clearer to obverse the extent of each errors. In addition, the results also show that the presented sensitivity analysis is useful to investigate that how the geometric errors influence the sphere surface accuracy. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.


1999 ◽  
Vol 23 (1A) ◽  
pp. 37-50
Author(s):  
S. Kurada ◽  
C. Bradley

A non-contact measurement technique was developed for the in-cycle assessment of ground surface texture. The system utilises off-the-self vision components to capture the pattern of scattered light from the surface, which is illuminated by a white light source at a shallow grazing angle. Three parameters, related to the surface texture, were derived from the pattern and correlation curves were established by plotting the three textural parameters against the corresponding average surface roughness Ra obtained from a stylus profilometer. A set of test samples, ground to a pre-determined roughness, were used to estimate the efficacy of the measurement technique. The proposed technique is fast and reliable means of extracting textural information from ground surfaces and, furthermore, it can be easily adapted to use in a production environment.


Author(s):  
Liping Wang ◽  
Weitao Li ◽  
Hao Si ◽  
Xing Yuan ◽  
Yuzhe Liu

Geometric deviation, defined as the distance between the designed surface and the machined surface, is an important component of machining errors in five-axis flank milling of the S-shaped test piece. Since the interpolated toolpath in practical machining process is the approximation of the theoretical toolpath, the geometric deviation caused by the interpolated toolpath appears. To overcome this problem, a novel geometric deviation reduction method is suggested in this study. First, the features of the S-shaped test piece are analyzed. Second, the theoretical toolpath is generated according to the designed surface and the cutter location data is obtained by discretizing the theoretical toolpath. The linear interpolation of the cutter location data is carried out to obtain the interpolated toolpath. Then, the geometric deviation is modeled by calculating the Hausdorff distance between the tool axis trajectory surface based on the interpolated toolpath and the offset surface of the designed surface. Finally, the geometric deviation is reduced by optimizing the cutter location data without inserting more cutter location points. The machining experiment is conducted to verify the effectiveness of the proposed method. The experimental results agree with the simulation results, and both of them indicate the geometric deviation on the machined surface reduces after optimization.


2019 ◽  
Vol 9 (16) ◽  
pp. 3216 ◽  
Author(s):  
Ci He ◽  
Shuyou Zhang ◽  
Lemiao Qiu ◽  
Xiaojian Liu ◽  
Zili Wang

To increase the reliability and accuracy of tolerance design, more and more research works are considering not only orientation and position deviations; they are also forming errors in tolerance modeling. As a direct cause of form errors in industrial mass production, the processing features of the machining system degrade over time. Under the Industry 4.0 paradigm, an assembly tolerance design method based on Skin Model Shape is proposed to take the effect of degrading processing features into consideration. A continuous-time multi-dimensional Markov process is trained through maximum likelihood estimation based on the nodal sampling point set on the machined surface. Degradation of the machined surface is modeled based on the joint probability distribution of nodal displacements. Assembly force constraints and assembly entity constraints are applied to spatial assembly simulations. Tolerance synthesis takes the manufacturing cost and assembling probability as design objectives. A design example of the rotary feed component in a five-axis machine tool is proposed for explanation and verification.


Sign in / Sign up

Export Citation Format

Share Document