Error Analysis by Square 3 x 3 Machining Method for Five-Axis Machining Centers

Author(s):  
Shigehiko Sakamoto ◽  
Atsushi Yokoyama ◽  
Kazumasa Nakayasu ◽  
Toshihiro Suzuki ◽  
Shinji Koike

Abstract The establishment of international standards for 5-axis control machining centers has been supported by the high interest of each country. Internationally, various accuracy inspection methods have been proposed and widely discussed. Accuracy measuring devices for these purposes have also been proposed. In 2014, inspection methods for 5-axis machines were published in ISO 10791-6 and 10791-7. In this research, we propose a test method to process 9 square faces as a new accuracy evaluation method. We simulate the influence of assembly error by the proposed square 3 × 3 machining method on the machined surface. By processing 9 square faces with different tool angle on the same plane, it was possible to evaluate the influence of assembly errors in the 5-axis machining center on the machined surface. Nine surfaces machined by the square 3 × 3 processing method cause differences in surface height due to alignment errors. In addition, nine machined surfaces become all diagonal not parallelism. The alignment errors of the 5-axis machining center is identified by evaluating the orientation of the machined surfaces. Specifically, we propose a newly method to measure the height difference of nine surfaces. Then, the possibility of identifying the alignment error of the 5-axis machining center using the measurement results is shown.

Author(s):  
Zongze Li ◽  
Ryuta Sato ◽  
Keiichi Shirase

Abstract Motion error of machine tool feed axes influences the machined workpiece accuracy. However, the influences of each error sources are not identical; some errors do not influence the machined surface although some error have significant influences. In addition, five-axis machine tools have more error source than conventional three-axis machine tools, and it is very tough to predict the geometric errors of the machined surface. This study proposes a method to analyze the relationships between the each error sources and the error of the machined surface. In this study, a kind of sphere-shaped workpiece is taken as a sample to explain how the sensitivity analysis makes sense in ball-end milling. The results show that the method can be applied for the axial errors, such as motion reversal errors, to make it clearer to obverse the extent of each errors. In addition, the results also show that the presented sensitivity analysis is useful to investigate that how the geometric errors influence the sphere surface accuracy. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.


Author(s):  
Zongze Li ◽  
Ryuta Sato ◽  
Keiichi Shirase ◽  
Yukitoshi Ihara

Abstract Five-axis machining center, combined three linear and two rotary axes, has been increasingly used in complex surface machining. However, as the two additional axes, the machined surface under table coordinate system is usually different from the tool motion under machine coordinate system, and as a result, it is very tough to predict the machined shape errors caused by each axes error motions. This research presents a new kind of sensitivity analysis method, to find the relationship between error motions of each axis and geometric errors of machined shape directly. In this research, the S-shaped machining test is taken as a sample to explain how the sensitivity analysis makes sense. The results show that the presented sensitivity analysis can investigate how the error motions affect the S-shaped machining accuracy and predicted the influence of error motions on certain positions, such as the reversal errors of the axes around motion reversal points. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.


2012 ◽  
Vol 523-524 ◽  
pp. 475-480 ◽  
Author(s):  
Katsunori Ohta ◽  
Zhi Meng Li ◽  
Masaomi Tsutsumi

NAS 979 has been used for over 40 years as a performance evaluation standard for five-axis machining centers. This standard provides some finishing conditions of the cone-frustum under five-axis control, and prescribes the measuring methods and permissible tolerances of geometric deviations. However, this standard cannot be applied to the tilting rotary table type five-axis machining center but to the universal spindle head type one. When the standard is applied to the tilting rotary table type, it is not clear yet that the effects of the geometric and synchronous deviations which influence the measured results. Thus, there are no methods for evaluating the accuracy of linear interpolation movement under simultaneous five-axis control. This paper proposes a machining test method using a truncated square pyramid for checking the accuracy of the tilting rotary table type five-axis machining centers. In the simulation and experiment, the bottom of the truncated square pyramid with a half apex angle of 15° is mounted on a fixture with a slope of 10° or 20°, and feed velocity of each axis is analyzed by changing the center position.


2010 ◽  
Vol 44-47 ◽  
pp. 834-838
Author(s):  
Xiang Po Zhang ◽  
Nai Hui Yu ◽  
Jian Zhong Shang ◽  
Zhuo Wang

Reliability test is the most effective way to achieve the data needed in machining center’s reliability design and assessment, and also a compulsory technological way to improve the reliability of the machining center. For the purposes of evaluating and improving the reliability level of machining center effectively, a laboratory reliability test for five-axis machining center was designed. This test method designed in this paper has the characteristics of high pertinence and easily realized in engineering, and it can be generalized as a reliability test criterion for five-axis machining center.


2005 ◽  
Vol 128 (1) ◽  
pp. 74-85 ◽  
Author(s):  
Xianbing Liu ◽  
Masakazu Soshi ◽  
Abhijit Sahasrabudhe ◽  
Kazuo Yamazaki ◽  
Masahiko Mori

Finish milling with a ball end mill is a key process in manufacturing high-precision and complex workpieces, such as dies and molds. Because of the complexity of the milling process, it is difficult to evaluate the microcharacteristics of machined surfaces real time, which necessitates the simulation of the process. In this area, the existing related simulation researches mainly focus on scallop height evaluation, but few have presented a whole picture of the microcharacteristics of milled surfaces. This paper develops a comprehensive simulation system based on a Z-map model for predicting surface topographic features and roughness formed in the finish milling process and studies the effect of machining parameters. The adoption of the discretization concept of the tool’s cutting motion makes it possible to dynamically track the cutting tool-workpiece interaction with the tool movement and to describe the cutting edges-workpiece discrete cutting interaction more realistically and, therefore, the microcharacteristics of the machined surfaces more accurately. Also, the effects of the cutting tool run-out and wear are incorporated into the developed model through modifying the tool center motion and the cutting-edge shape, respectively. As a fundamental study, the tool-swept envelope has been simulated. The developed simulation system is applied to thoroughly study the surface features formed by the 2.5-axis finish milling process. The application for general three-axis machining is discussed. Additionally, this paper studies the effect of the tool inclination, which is the most common characteristic in 3+2- or five-axis milling processes, on the machined surface features. Experiments are carried out to study the milling process and to verify the simulation results. The difference between the simulated and experimental results is discussed, and the reason behind the difference is explored.


2018 ◽  
Vol 84 (860) ◽  
pp. 17-00508-17-00508
Author(s):  
Toshiki HIROGAKI ◽  
Eiichi AOYAMA ◽  
Seigo NAKAMURA ◽  
Masahiro UENOYAMA

Author(s):  
Takamaru Suzuki ◽  
Shoya Iwama ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Takakazu Ikegami ◽  
...  

Abstract A five-axis machining center is equipped with a direct drive motor on a rotary axis and is capable of synchronous control, which makes it a feasible tool for quickly and accurately machining complicated three-dimensional surfaces such as propellers and hypoid gears. However, the accuracy of the machined shape and consistency of the freeform machined surface both need to be improved. We developed a method for maintaining the feed speed vector at the milling point by controlling three axes of the five-axis machining center (two linear and one rotary) to improve the quality of the machined surface considering differences in the servo characteristics of the three axes during the actual process. Experimental results showed that using the proposed method with an outside approach path for the machining tool greatly reduced the shape error. The effectiveness of the proposed method was verified by using a wireless Internet of Things holder to monitor the machining force.


2012 ◽  
Vol 516 ◽  
pp. 475-480
Author(s):  
Kenichi Terada ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa

In recent years, studies have been conducted about creating metal moulds using a five-axis controlled machining centre with ball end milling. Most of these reports concern the programming of CAM based on geometry. However, there have been few reports related to polish-less finished surface. Furthermore, a specular surface like a mirror and finishing under a constant angle between ball end milling and the work piece have not been investigated. Therefore, this paper deals with the gloss of the machined surface when feed rate and pick-feed rate are changed to maintain constant surface roughness considering tool run-out under the condition that the angle between the tool and work piece in contact are inclined at 15. However, by changing the combination of feed rate and pick-feed rate, various specular changes and direction of disposition of reflected light were obtained. Therefore, we suggest a new method of evaluating the gloss of these finished surfaces. Comparing results by the proposed method with ones by a glossmeter, it is clear that an appropriate ratio of feed rate and pick-feed rate is important for obtaining finished surface. Moreover, it is demonstrated that the proposed method is effective for estimating the gloss of the machined surface.


2013 ◽  
Vol 66 (5) ◽  
pp. 773-787 ◽  
Author(s):  
Hsin-Hung Chen

An algorithm of alignment calibration for Ultra Short Baseline (USBL) navigation systems was presented in the companion work (Part I). In this part (Part II) of the paper, this algorithm is tested on the sea trial data collected from USBL line surveys. In particular, the solutions to two practical problems referred to as heading deviation and cross-track error in the USBL line survey are presented. A field experiment running eight line surveys was conducted to collect USBL positioning data. The numerical results for the sea trial data demonstrated that the proposed algorithm could robustly and effectively estimate the alignment errors. Comparisons of the experimental result with the analytical prediction of roll misalignment estimation in Part I is drawn, showing good agreement. The experimental results also show that an inappropriate estimation of roll alignment error will significantly degrade the quality of estimations of heading and pitch alignment errors.


Sign in / Sign up

Export Citation Format

Share Document