Theoretical modelling and finite element simulation of AA6061 involute components based on 3D free bending process

2020 ◽  
Vol 178 ◽  
pp. 105607
Author(s):  
Tao Li ◽  
Hui Wang ◽  
Ali Abd El-Aty ◽  
Jiang Li ◽  
Yong Zhang ◽  
...  
2014 ◽  
Vol 941-944 ◽  
pp. 1688-1691
Author(s):  
Shou Fa Liu ◽  
Fei Xue ◽  
Song Lin Wu

This study is aimed to investigate the spring-back angle of clad metal sheet in bending process by using finite element simulation and experiment to meet the growing requires in the application of clad metals. In this study, the clad metals processed into 1mm thick from CU11000 and AL1050 were bent 90o over a die with a bend radius of 1mm. The results show that there is not any relative sliding, crushing or peeling occurred in the junction of the clad material during the bending process, the spring-back angle of the clad metal is always smaller than each single metal and the CU content increasing also caused spring-back angle become small. The configuration of a harder material (CU11000) in tensile side also has a smaller spring-back angle.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


Sign in / Sign up

Export Citation Format

Share Document