Effect of nanoparticle shape on cooling performance of boehmite-alumina nanofluid in a helical heat sink for laminar and turbulent flow regimes

Author(s):  
Amin Shahsavar ◽  
Kasra Moradi ◽  
Çağatay Yıldız ◽  
Peyman Farhadi ◽  
Müslüm Arıcı
Author(s):  
Sandipan S. Pawar ◽  
Vivek K. Sunnapwar ◽  
Vivek K. Yakkundi

Experimental studies and CFD investigations were carried out under laminar and turbulent flow regimes in isothermal steady state and non-isothermal unsteady state conditions in helical coils for Newtonian and non-Newtonian fluids. Water and glycerol-water mixture (10 and 20 % glycerol) as Newtonian fluids and dilute aqueous polymer solutions of sodium carboxymethyl cellulose (SCMC), sodium alginate (SA) as non-Newtonian fluids were used in this study. The experiments were performed for three helical coils of coil curvature ratios as 0.0757, 0.064 and 0.055 in laminar and turbulent flow regimes. For the first time, two innovative correlations to calculate Nusselt number (Nu) in terms of new dimensionless ‘M’ number, Prandtl number and coil curvature ratio under different conditions for Newtonian fluids are proposed in this paper. Third correlation of Nu vs. Graetz number (Gz) including the effects of coil curvature on heat transfer coefficient which was not considered by earlier investigators is developed based on tests conducted in laminar flow for Newtonian fluids. All these three innovative correlations developed based on experimental data which were not found in the literature. These correlations were compared with the work of earlier investigators and were found to be in good agreement. The CFD analysis for laminar and turbulent flow was carried out using the CFD package FLUENT 12.0.16. The CFD calculation results (Nui, U) for laminar and turbulent flows were compared with the experimental results, and also the work of earlier investigators was found to be in excellent agreement. Further, the effect of helix diameter on heat transfer for Newtonian and Non-Newtonian fluids are also presented in this paper and it was observed that as helix diameter increases, overall heat transfer coefficient decreases.


2021 ◽  
Vol 11 (12) ◽  
pp. 5471
Author(s):  
Daniel Gleichauf ◽  
Felix Oehme ◽  
Michael Sorg ◽  
Andreas Fischer

Thermographic flow visualization is a contactless, non-invasive technique to visualize the boundary layer flow on wind turbine rotor blades, to assess the aerodynamic condition and consequently the efficiency of the entire wind turbine. In applications on wind turbines in operation, the distinguishability between the laminar and turbulent flow regime cannot be easily increased artificially and solely depends on the energy input from the sun. State-of-the-art image processing methods are able to increase the contrast slightly but are not able to reduce systematic gradients in the image or need excessive a priori knowledge. In order to cope with a low-contrast measurement condition and to increase the distinguishability between the flow regimes, an enhanced image processing by means of the feature extraction method, principal component analysis, is introduced. The image processing is applied to an image series of thermographic flow visualizations of a steady flow situation in a wind tunnel experiment on a cylinder and DU96W180 airfoil measurement object without artificially increasing the thermal contrast between the flow regimes. The resulting feature images, based on the temporal temperature fluctuations in the images, are evaluated with regard to the global distinguishability between the laminar and turbulent flow regime as well as the achievable measurement error of an automatic localization of the local flow transition between the flow regimes. By applying the principal component analysis, systematic temperature gradients within the flow regimes as well as image artefacts such as reflections are reduced, leading to an increased contrast-to-noise ratio by a factor of 7.5. Additionally, the gradient between the laminar and turbulent flow regime is increased, leading to a minimal measurement error of the laminar-turbulent transition localization. The systematic error was reduced by 4% and the random error by 5.3% of the chord length. As a result, the principal component analysis is proven to be a valuable complementary tool to the classical image processing method in flow visualizations. After noise-reducing methods such as the temporal averaging and subsequent assessment of the spatial expansion of the boundary layer flow surface, the PCA is able to increase the laminar-turbulent flow regime distinguishability and reduce the systematic and random error of the flow transition localization in applications where no artificial increase in the contrast is possible. The enhancement of contrast increases the independence from the amount of solar energy input required for a flow evaluation, and the reduced errors of the flow transition localization enables a more precise assessment of the aerodynamic condition of the rotor blade.


Sign in / Sign up

Export Citation Format

Share Document