Nonlinear dynamic analysis of large diameter inclined oil–water two phase flow pattern

2010 ◽  
Vol 36 (3) ◽  
pp. 166-183 ◽  
Author(s):  
Yan-Bo Zong ◽  
Ning-De Jin ◽  
Zhen-Ya Wang ◽  
Zhong-Ke Gao ◽  
Chun Wang
2018 ◽  
Vol 74 (1) ◽  
pp. 25-41 ◽  
Author(s):  
Yuansheng He ◽  
Yingyu Ren ◽  
Yunfeng Han ◽  
Ningde Jin

AbstractThe present study is a report on the asymmetry of dispersed oil phase in vertical upward oil-water two phase flow. The multi-channel signals of the rotating electric field conductance sensor with eight electrodes are collected in a 20-mm inner diameter pipe, and typical images of low pattern are captured using a high speed camera. With the multi-channel rotating electric field conductance signals collected at pipe cross section, multi-scale time asymmetry (MSA) and an algorithm of multi-scale first-order difference scatter plot are employed to uncover the fluid dynamics of oil-water two phase flow. The results indicate that MSA can characterise the non-linear behaviours of oil-water two phase flow. Besides, the MSA analysis also beneficial for understanding the underlying inhomogeneous distribution of the flow pattern in different directions at pipe cross section.


2011 ◽  
Vol 383-390 ◽  
pp. 826-829 ◽  
Author(s):  
Dao Zhen Xu ◽  
Guo Zhong Zhang ◽  
Xin Zhang

The stratified water-oil two—phase flow was modeled using VOF method in horizontal pipe and surface tension was taken into consideration using CSF model. It was found that the surface tension had great impact on the small density difference two-phase flow even in large diameter pipe, which would lead the interface curved and pressure gradient increased.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianlei Yang ◽  
Peng Li ◽  
Xuhui Zhang ◽  
Xiaobing Lu ◽  
Qing Li ◽  
...  

AbstractA series of experiments were conducted to investigate flow pattern transitions and concentration distribution during simultaneous pipe flow of oil–water two-phase flow through the horizontal and vertical sections. The flowing media applied were white mineral oil and distilled water. Superficial oil and water velocities were between 0 and 0.57 m/s. Flow pattern maps revealed that the horizontal and vertical sections of the pipe lead to different flow pattern characteristics under the same flow conditions. The original contributions of this work are that a transition mechanism for predicting the boundary between oil-in-water (O/W) flow and water-in-oil (W/O) in oil–water two-phase flow was obtained. The effects of input water cut, oil and water superficial velocities on the concentration distribution of the dispersed phase were studied. The empirical formulas for the phase holdup based on the drift-flux model were obtained. The predicted results agreed well with those of the experimental data, especially for the O/W flow pattern.


Sign in / Sign up

Export Citation Format

Share Document