Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface

2010 ◽  
Vol 36 (5) ◽  
pp. 375-384 ◽  
Author(s):  
Ho Seon Ahn ◽  
Hyungdae Kim ◽  
HangJin Jo ◽  
SoonHo Kang ◽  
WonPyo Chang ◽  
...  
Author(s):  
Emilio Baglietto ◽  
Etienne Demarly ◽  
Ravikishore Kommajosyula

Advancement in the experimental techniques have brought new insights into the microscale boiling phenomena, and provide the base for a new physical interpretation of flow boiling heat transfer. A new modeling framework in Computational Fluid Dynamics has been assembled at MIT, and aims at introducing all necessary mechanisms, and explicitly tracks: (1) the size and dynamics of the bubbles on the surface; (2) the amount of microlayer and dry area under each bubble; (3) the amount of surface area influenced by sliding bubbles; (4) the quenching of the boiling surface following a bubble departure and (5) the statistical bubble interaction on the surface. The preliminary assessment of the new framework is used to further extend the portability of the model through an improved formulation of the force balance models for bubble departure and lift-off. Starting from this improved representation at the wall, the work concentrates on the bubble dynamics and dry spot quantification on the heated surface, which governs the Critical Heat Flux (CHF) limit. A new proposition is brought forward, where Critical Heat Flux is a natural limiting condition for the heat flux partitioning on the boiling surface. The first principle based CHF is qualitatively demonstrated, and has the potential to deliver a radically new simulation technique to support the design of advanced heat transfer systems.


Author(s):  
Sung Joong Kim ◽  
Tom McKrell ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu

Nanofluids are known as dispersions of nano-scale particles in solvents. Recent reviews of pool boiling experiments using nanofluids have shown that they have greatly enhanced critical heat flux (CHF). In many practical heat transfer applications, however, it is flow boiling that is of particular importance. Therefore, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the CHF in the flow boiling condition. The nanofluid used in this work was a dispersion of aluminum oxide particles in water at very low concentration (≤0.1 v%). CHF was measured in a flow loop with a stainless steel grade 316 tubular test section of 5.54 mm inner diameter and 100 mm long. The test section was designed to provide a maximum heat flux of about 9.0 MW/m2, delivered by two direct current power supplies connected in parallel. More than 40 tests were conducted at three different mass fluxes of 1,500, 2,000, and 2,500 kg/m2sec while the fluid outlet temperature was limited not to exceed the saturation temperature at 0.1 MPa. The experimental results show that the CHF could be enhanced by as much as 45%. Additionally, surface inspection using Scanning Electron Microscopy reveals that the surface morphology of the test heater has been altered during the nanofluid boiling, which, in turn, provides valuable clues for explaining the CHF enhancement.


Author(s):  
Laishun Wang ◽  
Abdul R. Khan ◽  
Nejdet Erkan ◽  
Haiguang Gong ◽  
Koji Okamoto

2017 ◽  
Vol 316 ◽  
pp. 209-217 ◽  
Author(s):  
Fangxin Hou ◽  
Huajian Chang ◽  
Yufeng Zhao ◽  
Ming Zhang ◽  
Tianfang Gao ◽  
...  

2003 ◽  
Vol 125 (6) ◽  
pp. 1038-1045 ◽  
Author(s):  
Yuichi Mitsutake ◽  
Masanori Monde

An ultra high critical heat flux (CHF) was attempted using a highly subcooled liquid jet impinging on a small rectangular heated surface of length 5∼10mm and width 4 mm. Experiments were carried out at jet velocities of 5∼60m/s, a jet temperature of 20°C and system pressures of 0.1∼1.3MPa. The degree of subcooling was varied from 80 to 170 K with increasing system pressure. The general correlation for CHF is shown to be applicable for such a small heated surface under a certain range of conditions. The maximum CHF achieved in these experiments was 211.9 MW/m2, recorded at system pressure of 0.7 MPa, jet velocity of 35 m/s and jet subcooling of 151 K, and corresponds to 48% of the theoretical maximum heat flux proposed by Gambill and Lienhard.


Sign in / Sign up

Export Citation Format

Share Document