scholarly journals Interrogating the effect of an orifice on the upward two-phase gas–liquid flow behavior

2015 ◽  
Vol 74 ◽  
pp. 96-105 ◽  
Author(s):  
Ammar Zeghloul ◽  
Abdelwahid Azzi ◽  
Faiza Saidj ◽  
Barry J. Azzopardi ◽  
Buddhika Hewakandamby
Author(s):  
Hong-Quan Zhang ◽  
Qian Wang ◽  
Cem Sarica ◽  
James P. Brill

In Zhang et al. [1], a unified hydrodynamic model is developed for prediction of gas-liquid pipe flow behavior based on slug dynamics. In this study, the new model is validated with extensive experimental data acquired with different pipe diameters, inclination angles, fluid physical properties, gas-liquid flow rates and flow patterns. Good agreement is observed in every aspect of the two-phase pipe flow.


Author(s):  
Mehmet Sorgun ◽  
Reza E. Osgouei ◽  
M. Evren Ozbayoglu ◽  
A. Murat Ozbayoglu

Although flow of two-phase fluids is studied in detailed for pipes, there exists a lack of information about aerated fluid flow behavior inside a wellbore. This study aims to simulate gas-liquid flow inside horizontal eccentric annulus using an Eulerian-Eulerian computational fluid dynamics (CFD) model for two-phase flow patterns i.e., dispersed bubble, dispersed annular, plug, slug, churn, wavy annular. To perform experiments using air-water mixtures for various in-situ air and water flow rates, a flow loop was constructed. A digital high speed camera is used for recording each test dynamically for identification of the liquid holdup and flow patterns. Results showed that CFD model predicts frictional pressure losses with an error less than 20% for all two-phase flow patterns when compared with experimental data.


2003 ◽  
Vol 125 (4) ◽  
pp. 274-283 ◽  
Author(s):  
Hong-Quan Zhang ◽  
Qian Wang ◽  
Cem Sarica ◽  
James P. Brill

In Zhang et al. [1], a unified hydrodynamic model is developed for prediction of gas-liquid (co-current) pipe flow behavior based on slug dynamics. In this study, the new model is validated with extensive experimental data acquired with different pipe diameters, inclination angles, fluid physical properties, gas-liquid flow rates and flow patterns. Good agreement is observed in every aspect of the two-phase pipe flow.


2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


1984 ◽  
Vol 39 (4) ◽  
pp. 751-765 ◽  
Author(s):  
Leon Troniewski ◽  
Roman Ulbrich

Sign in / Sign up

Export Citation Format

Share Document