Two-phase flow induced vibration of piping structure with flow restricting orifices

2019 ◽  
Vol 113 ◽  
pp. 59-70 ◽  
Author(s):  
Olufemi E. Bamidele ◽  
Wael H. Ahmed ◽  
Marwan Hassan
Author(s):  
Deepanjan Mitra ◽  
Vijay K. Dhir ◽  
Ivan Catton

In the past, fluid-elastic instability in two-phase flow has been largely investigated with air-water flow. In this work, new experiments are conducted in air-water cross-flow with a fully flexible 5 × 3 normal square array having pitch-to-diameter ratio of 1.4. The tubes have a diameter of 0.016 m and a length of 0.21 m. The vibrations are measured using strain gages installed on piano wires used to suspend the tubes. Experiments are carried out for void fractions from 0%–30%. A comparison of the results of the current tests with previous experiments conducted in air-water cross-flow shows that instability occurs earlier in a fully flexible array as compared to a flexible tube surrounded by rigid tubes in an array. An attempt is made to separate out the effects of structural parameters of three different experimental datasets by replotting the instability criterion by incorporating the instability constant K, in the reduced velocity parameter.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Shuichiro Miwa ◽  
Takashi Hibiki ◽  
Michitsugu Mori

Fluctuating force induced by horizontal gas–liquid two-phase flow on 90 deg pipe bend at atmospheric pressure condition is considered. Analysis was conducted to develop a model which is capable of predicting the peak force fluctuation frequency and magnitudes, particularly at the stratified wavy two-phase flow regime. The proposed model was developed from the local instantaneous two-fluid model, and adopting guided acoustic theory and dynamic properties of one-dimensional (1D) waves to consider the collisional force due to the interaction between dynamic waves and structure. Comparing the developed model with experimental database, it was found that the main contribution of the force fluctuation due to stratified wavy flow is from the momentum and pressure fluctuations, and collisional effects. The collisional effect is due to the fluid–solid interaction of dynamic wave, which is named as the wave collision force. Newly developed model is capable of predicting the force fluctuations and dominant frequency range with satisfactory accuracy for the flow induced vibration (FIV) caused by stratified wavy two-phase flow in 52.5 mm inner diameter (ID) pipe bend.


Author(s):  
In-Cheol Chu ◽  
Heung June Chung ◽  
Chang Hee Lee ◽  
Hyung Hyun Byun ◽  
Moo Yong Kim

In the present study, a series of experiments have been performed to investigate a fluid-elastic instability of a nuclear steam generator U-tube bundle in an air-water two-phase flow condition. A total of 39 U-tubes are arranged in a rotated square array with a pitch-to-diameter ratio of 1.633. The diameter and other geometrical parameters of U-bend region are the same to those of an actual steam generator, but the vertical length of U-tubes are reduced to 2-span in contrast to 9-span of an actual steam generator. The following parameters were experimentally measured to evaluate a fluid-elastic instability of U-tube bundles in a two-phase flow: a general tube vibration response, a critical gap velocity, a damping ratio and a hydrodynamic mass. Based on the experimental measurements, the instability factor, K, of Connors’ relation was preliminary assessed with some assumptions on the velocity and density profiles of the two-phase flow.


Author(s):  
W. G. Sim

Two-phase cross flow exists in many shell- and tube heat exchangers such as condensers, evaporators and nuclear steam generators. During the last two decades, research devoted to two-phase flow induced vibrations has increased, mainly driven by the nuclear industry. Flow-induced vibration excitation forces can cause excessive vibration which will result in long-term fretting-wear or fatigue. To avoid potential tube failures in heat exchangers, it is required for designer to have guidelines that incorporate flow-induced vibration excitation forces. The phenomenon of the vibration of tubes in two-phase flow is very complex and depends on factors which are nonexistent in single-phase flows. To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Pressure distributions generated by two-phase flow over tube surfaces yield more general information than the local velocity distribution. The pressure coefficient distribution obtained by experimental test has been evaluated.


Author(s):  
Olufemi E. Bamidele ◽  
Wael H. Ahmed ◽  
Marwan Hassan

Abstract The current work investigates two-phase flow induced vibrations in 90° U-bend. The two-phase induced vibration of the structure was investigated in the vertical, horizontal and axial directions for various flow patterns from bubbly flow to wavy and annular-dispersed flow. The void fractions at various locations along the piping including the fully developed void fraction and the void fraction at the entrance of the U-bend were fully investigated and correlated with the vibration amplitude. The results show that the excitation forces of the two-phase flow in a piping structure are highly dependent on the flow pattern and the flow conditions upstream of the bend. The fully developed void fraction and slip between phases are important in modelling of forces in U-bends and elbows.


2011 ◽  
Vol 241 (5) ◽  
pp. 1508-1515 ◽  
Author(s):  
In-Cheol Chu ◽  
Heung June Chung ◽  
Seungtae Lee

2004 ◽  
Vol 126 (4) ◽  
pp. 523-533 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor

Two-phase flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. Some knowledge on tube damping mechanisms is required to avoid flow-induced vibration problems. This paper outlines the development of a semi-empirical model to formulate damping of heat exchanger tube bundles in two-phase cross flow. The formulation is based on information available in the literature and on the results of recently completed experiments. The compilation of a database and the formulation of a design guideline are outlined in this paper. The effects of several parameters such as flow velocity, void fraction, confinement, flow regime and fluid properties are discussed. These parameters are taken into consideration in the formulation of a practical design guideline.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Paul Feenstra ◽  
David S. Weaver ◽  
Tomomichi Nakamura

Laboratory experiments were conducted to determine the flow-induced vibration response and fluidelastic instability threshold of model heat exchanger tube bundles subjected to a cross-flow of refrigerant 11. Tube bundles were specially built with tubes cantilever-mounted on rectangular brass support bars so that the stiffness in the streamwise direction was about double that in the transverse direction. This was designed to simulate the tube dynamics in the U-bend region of a recirculating-type nuclear steam generator. Three model tube bundles were studied, one with a pitch ratio of 1.49 and two with a smaller pitch ratio of 1.33. The primary intent of the research was to improve our understanding of the flow-induced vibrations of heat exchanger tube arrays subjected to two-phase cross-flow. Of particular concern was to compare the effect of the asymmetric stiffness on the fluidelastic stability threshold with that of axisymmetric stiffness arrays tested most prominently in literature. The experimental results are analyzed and compared with existing data from literature using various definitions of two-phase fluid parameters. The fluidelastic stability thresholds of the present study agree well with results from previous studies for single-phase flow. In two-phase flow, the comparison of the stability data depends on the definition of two-phase flow velocity.


Author(s):  
Xuan Huang ◽  
Huan-Huan Qi ◽  
Feng-Chun Cai ◽  
Zhi-Peng Feng ◽  
Shuai Liu

The heat transfer tube of steam generator is an important part of the primary loop boundary, the integrity is crucial to the safe operation of the whole reactor system; the flow induced vibration is one of the main factors leading to the failure of heat transfer tube in steam generator. Both ASME and RG1.20 have made a clear requirement for the analysis and evaluation of the flow induced vibration of steam generator. The flow induced vibration of heat transfer tube in two-phase flow is the difficult and important content in the analysis. In this paper, the finite element model of heat transfer tube is established and the modal analysis is carried out. Then in order to evaluate the influence of two-phase flow in the secondary side and support boundary constraint, the analytical results are compared with the natural frequencies of the heat transfer tube measured in the two-phase flow test. On the basis of accurate simulation of the dynamic characteristics of heat transfer tube in two-phase flow, the paper calculate the turbulent excitation response and the fluidelastic instability ratio aiming at the main mechanism causing the flow induced vibration of heat transfer tube in two-phase flow. Firstly, the modified PSD of turbulent excitation is proposed on the foundation of root mean square displacement amplitude of heat transfer tube measured in two-phase flow test. The calculation result of the amplitude of heat transfer tube with different void fraction can envelope the test result by using the modified PSD as input, and the safety margin is reasonable. Then we also verify whether the analysis conclusion of fluidelastic instability is in agreement with the test. Finally, the analytical technique is applied to the analysis of flow induced vibration of steam generator to verify the design of structure. The paper studies on flow induced vibration analysis and evaluation a heat transfer tube of steam generator in two-phase flow. The analysis program of flow induced vibration on the basis of the test results. The investigation can be used for the risk prediction and evaluation of flow induced vibration of heat transfer tube in two-phase flow, solve the technical difficulties of flow induced vibration analysis in two-phase flow, and provide the technical support for the flow induced vibration analysis of steam generator.


1994 ◽  
Vol 116 (3) ◽  
pp. 233-253 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor

Two-phase flow exists in many industrial components. To avoid costly vibration problems, sound technology in the area of two-phase flow-induced vibration is required. This paper is an overview of the principal mechanisms governing vibration in two-phase flow. Dynamic parameters such as hydrodynamic mass and damping are discussed. Vibration excitation mechanisms in axial flow are outlined. These include fluidelastic instability, phase-change noise, and random excitation. Vibration excitation mechanisms in cross-flow, such as fluidelastic instability, periodic wake shedding, and random excitation, are reviewed.


Sign in / Sign up

Export Citation Format

Share Document