scholarly journals Correlated evolution of fish host length and parasite spore size: a tale from myxosporeans inhabiting elasmobranchs

Author(s):  
Martina Lisnerová ◽  
Aleš Lisner ◽  
Delfina M.P. Cantatore ◽  
Bjoern C. Schaeffner ◽  
Hana Pecková ◽  
...  
2020 ◽  
Vol 142 ◽  
pp. 83-97
Author(s):  
A Chandran ◽  
PU Zacharia ◽  
TV Sathianandan ◽  
NK Sanil

The present study describes a new species of myxosporean, Ellipsomyxa ariusi sp. nov., infecting the gallbladder of the threadfin sea catfish Arius arius (Hamilton, 1822). E. ariusi sp. nov. is characterized by bivalvular, ellipsoid or elongate-oval myxospores with smooth spore valves and a straight suture, arranged at an angle to the longitudinal spore axis. Mature myxospores measured 10.1 ± 0.8 µm in length, 6.8 ± 0.5 µm in width and 7.7 ± 0.7 µm in thickness. Polar capsules are equal in size and oval to pyriform in shape. They are positioned at an angle to the longitudinal myxospore axis and open in opposite directions. Polar capsules measured 2.8 ± 0.3 µm in length and 2.5 ± 0.4 µm in width; polar filaments formed 4-5 coils, and extended to 32.2 ± 2.1 µm in length. Monosporic and disporic plasmodial stages attached to the wall of gallbladder. Molecular analysis of the type specimen generated a 1703 bp partial SSU rDNA sequence (MN892546), which was identical to the isolates from 3 other locations. In phylogenetic analyses, genus Ellipsomyxa appeared monophyletic and E. ariusi sp. nov. occupied an independent position in maximum likelihood and Bayesian inference trees with high bootstrap values. The overall prevalence of infection was 54.8% and multiway ANOVA revealed that it varied significantly with location, year, season, sex and size of the fish host. Histopathological changes associated with E. ariusi sp. nov. infection included swelling, vacuolation and detachment of epithelial layer, reduced mucus production and altered consistency and colour of bile. Based on the morphologic, morphometric and molecular differences with known species of Ellipsomyxa, and considering differences in host and geographic locations, the present species is treated as new and the name Ellipsomyxa ariusi sp. nov. is proposed.


1998 ◽  
Vol 38 (7) ◽  
pp. 73-79 ◽  
Author(s):  
Hooi-Ling Lee ◽  
Donald DeAngelis ◽  
Hock-Lye Koh

This paper discusses the spatial distribution patterns of the various species of the Unionid mussels as functions of their respective life-cycle characteristics. Computer simulations identify two life-cycle characteristics as major factors governing the abundance of a species, namely the movement range of their fish hosts and the success rate of the parasitic larval glochidia in finding fish hosts. Core mussels species have fish hosts with large movement range to disperse the parasitic larval glochidia to achieve high levels of abundance. Species associated with fish host of limited movement range require high success rate of finding fish host to achieve at least an intermediate level of abundance. Species with low success rate of finding fish hosts coupled with fish hosts having limited movement range exhibit satellite species characteristics, namely rare in numbers and sparse in distributions.


Parasitology ◽  
1981 ◽  
Vol 83 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Margaretha K. S. Gustafsson ◽  
Marianne C. Wikgren

SUMMARYThe activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum was studied following cultivation of plerocercoids for short times in vitro and in vivo. In the plerocercoid the neurosecretory cells gave a very weak reaction with paraldehyde fuchsin (PAF). After cultivation for 1 h large numbers of neurosecretory cells filled with PAF-positive granules were evident. The significance of the activation of the neurosecretory system during the transfer of the worm from the cold-blooded fish host to the warm-blooded final host is discussed.


Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1767-1774 ◽  
Author(s):  
V. N. MIKHEEV ◽  
A. F. PASTERNAK ◽  
E. T. VALTONEN

SUMMARYWe tested the hypothesis that host specificity in ectoparasites does not depend exclusively on the features of the host but also on surrounding habitats, using 2 fish ectoparasites, Argulus coregoni and A. foliaceus (Crustacea: Branchiura), occurring sympatrically in Finnish lakes. Although these parasites are considered to be of low specificity, we found that the larger of the 2 species, A. coregoni developed a pronounced preference for salmonid hosts at the beginning of maturation (defined by the presence of copulating specimens). Argulus foliaceus infects a much wider range of fish hosts. We showed that specialization of A. coregoni on salmonids does not necessarily result from incompatibility with other fishes, but could instead reflect higher sensitivity of oxygen depletion compared with A. foliaceus. Adult A. coregoni may meet these demands by attaching to salmonids, the typical inhabitants of well-aerated waters. Young parasites of both species showed little host specificity and attached mainly to fishes with higher body reflectivity. In host choice experiments, A. coregoni of 4–5 mm length preferred salmonids (rainbow trout) to cyprinids (roach) irrespective of the type of fish host, on which it had been previously grown in the laboratory. We suggest that such an innate ontogenetic shift in host preference maintains the major part of the parasite population on its principal host, ensuring successful reproduction within suitable habitats.


Evolution ◽  
2017 ◽  
Vol 71 (8) ◽  
pp. 2010-2021 ◽  
Author(s):  
Felipe M. Gawryszewski ◽  
Miguel A. Calero-Torralbo ◽  
Rosemary G. Gillespie ◽  
Miguel A. Rodríguez-Gironés ◽  
Marie E. Herberstein
Keyword(s):  

2015 ◽  
Vol 282 (1815) ◽  
pp. 20151421 ◽  
Author(s):  
Göran Arnqvist ◽  
Ahmed Sayadi ◽  
Elina Immonen ◽  
Cosima Hotzy ◽  
Daniel Rankin ◽  
...  

The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘ C -value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.


Phytotaxa ◽  
2018 ◽  
Vol 336 (2) ◽  
pp. 148 ◽  
Author(s):  
CARLOS CERREJÓN ◽  
ENRIQUE MAGUILLA ◽  
DIETMAR QUANDT ◽  
JESÚS MUÑOZ ◽  
MODESTO LUCEÑO

Specimens of Andreaea sect. Andreaea collected in Lesotho show morphological differences from the remaining Sub-Saharan Africa species in the group. Particularly, Lesotho specimens have much larger spores, a character diagnostic in the genus. Spore size also separates the Lesotho specimens from typical A. rupestris from the Northern Hemisphere. Consequently, we describe a new species from the highlands of Lesotho (Andreaea barbarae). Additionally, we present a taxonomic key to all accepted species of Andreaea sect. Andreaea in sub-Saharan Africa.


2017 ◽  
Vol 92 (1) ◽  
pp. 109-115 ◽  
Author(s):  
P.H.O. Cavalcante ◽  
F. Moravec ◽  
C.P. Santos

AbstractA new nematode species,Philometroides acreanensisn. sp. (Philometridae), is described from female specimens recovered from the stomach wall of the freshwater catfishPimelodus blochiiValenciennes (Pimelodidae) collected in the Acre River (Amazon River basin), Acre State, Brazil. Based on examination by light and scanning electron microscopy, the new species differs from the two other South American congeneric species mainly in the body length of the gravid female (240–280 mm), the length of the oesophagus (1.25 mm in holotype) representing 0.5% of the entire body length, the range of cuticular embossment, as well as the location in the host (stomach), order of the fish host (Siluriformes) and the geographical distribution (Amazon River drainage system). This is the third known species ofPhilometroidesYamaguti, 1935 reported from South America. A key to species ofPhilometroidesoccurring in the fish of America is provided.


Author(s):  
Wouter Koch ◽  
Peter Boer ◽  
Johannes IJ. Witte ◽  
Henk W. Van der Veer ◽  
David W. Thieltges

A conspicuous part of the parasite fauna of marine fish are ectoparasites, which attach mainly to the fins or gills. The abundant copepods have received much interest due to their negative effects on hosts. However, for many localities the copepod fauna of fish is still poorly known, and we know little about their temporal stability as long-term observations are largely absent. Our study provides the first inventory of ectoparasitic copepods on fish from the western Wadden Sea (North Sea) based on field data from 1968 and 2010 and additional unpublished notes. In total, 47 copepod parasite species have been recorded on 52 fish host species to date. For two copepod species parasitizing the European flounder (Platichthys flesus), a quantitative comparison of infection levels between 1968 and 2010 was possible. Whereas Acanthochondria cornuta did not show a change in the relationship between host size and infection levels, Lepeophtheirus pectoralis shifted towards the infection of smaller hosts, with higher infection levels in 2010 compared to 1968. These differences probably reflect the biology of the species and the observed decrease in abundance and size of flounders during the last decades. The skin-infecting L. pectoralis can probably compensate for dwindling host abundance by infecting smaller fish and increasing its abundance per given host size. In contrast, the gill cavity inhabiting A. cornuta probably faces a spatial constraint (fixed number of gill arches), thus limiting its abundance and setting a minimum for the host size necessary for infections.


Sign in / Sign up

Export Citation Format

Share Document