The influence of initial atomized droplet size on residual particle size from pressurized metered dose inhalers

2013 ◽  
Vol 455 (1-2) ◽  
pp. 57-65 ◽  
Author(s):  
Poonam Sheth ◽  
Stephen W. Stein ◽  
Paul B. Myrdal
2017 ◽  
Vol 51 (8) ◽  
pp. 998-1008 ◽  
Author(s):  
B. Gavtash ◽  
H. K. Versteeg ◽  
G. Hargrave ◽  
B. Myatt ◽  
D. Lewis ◽  
...  

Author(s):  
Elena Bezuglaya ◽  
Nikolay Lyapunov ◽  
Vladimir Bovtenko ◽  
Igor Zinchenko ◽  
Yurij Stolper

Aim. The purpose was to provide the rationale of test in regard to uniformity of fine particles dose for pressurised metered dose inhalers (pMDIs). Materials and methods. The pMDIs containing suspensions of salbutamol sulfate (SS) or solutions of beclometasone dipropionate (BD) were studied by laser diffraction and high performance liquid chromatography (HPLC). The particle size distribution of SS, the average dose mass and uniformity of dose mass, the average delivered dose and the uniformity of delivered dose, the average fine particles dose and uniformity of fine particles dose were determined. Apparatus A was used for assessment of fine particles dose. Results. The two analytical procedures for the quantitative determination of SS and BD by HPLC were validated in the ranges with low concentrations of these substances. The 5 medicinal products in pMDI dosage form were studied: 3 preparations were with SS and 2 ones contained BD. It was shown that three products with SS were very similar in regard to particle size distribution in containers and the average values of delivered dose were almost the same, but these products were different in the average dose mass and fine particle dose. According to the research results, the expediency of determining the average dose mass and the tests concerning uniformity of dosing of preparations by dose mass and by fine particle dose was substantiated. It was shown that in the case of pMDI the dosing of solutions of BD was more uniform compared to suspensions of SS. The approaches of leading and other pharmacopoeias concerning uniformity of dosing for pMDIs were critically discussed. The expediency of determination of uniformity of fine particle dose at the stage of pharmaceutical development was substantiated, as the therapeutic effect depends on fine particle dose. Issues concerning standardization pMDIs in regard to uniformity of fine particle dose were discussed. Conclusions. The expediency of standardization and quality control of pMDIs in regard to such attributes as the average dose mass, which characterizes the volume of the metering chamber of the valve as well as the uniformity of the dose mass and the uniformity of fine particle dose, which assure the therapeutic effect of each dose of the product was substantiated


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Henk Versteeg ◽  
Abdul Qaiyum Shaik

Pressurized metered-dose inhalers (pMDIs) have been the most effective therapeutic treatment for controlling lung diseases such as asthma and COPD. The flow through a two-orifice system of pMDI is very complex and poorly understood. Previous experimental work has shown that metastability may play a significant role in determining the flow conditions inside pMDIs. In this paper, we present the findings of a homogeneous equilibrium model with those of a delayed equilibrium model (DEM) accounting for propellant metastability. These results are compared with the available experimental and numerical predictions Further, the DEM was applied with HFA propellants R134A and R227, and the results were compared with traditional propellant R12.


Sign in / Sign up

Export Citation Format

Share Document