scholarly journals Extended release pellets prepared by hot melt extrusion technique for abuse deterrent potential: Category-1 in-vitro evaluation

2020 ◽  
Vol 587 ◽  
pp. 119624 ◽  
Author(s):  
Arun Butreddy ◽  
Sandeep Sarabu ◽  
Nagireddy Dumpa ◽  
Suresh Bandari ◽  
Michael A. Repka
2015 ◽  
Vol 487 (1-2) ◽  
pp. 167-176 ◽  
Author(s):  
Manjeet B. Pimparade ◽  
Joseph T. Morott ◽  
Jun-Bom Park ◽  
Vijay I. Kulkarni ◽  
Soumyajit Majumdar ◽  
...  

2017 ◽  
Vol 13 (6) ◽  
pp. 473 ◽  
Author(s):  
Klaus Wening, PhD ◽  
Sebastian Schwier, PhD ◽  
Hans-J. Stahlberg, MD ◽  
Eric Galia, PhD

Objective: Hot-melt extrusion (HME) technology has been used for manufacturing extended-release abuse-deterrent formulations (ADFs) of opioid-type analgesics with improved tamper-resistant properties. Our objective was to describe application of this technology to immediate-release (IR) ADFs.Design: For development of a sample IR ADF (hydrocodone 10 mg/acetaminophen 325 mg) based on HME, feasibility studies were performed using different excipients. The formulation selected for further development was evaluated via in vitro test battery. Moreover, in vivo performance of IR ADF technologies was investigated in an open-label, randomized, cross-over, phase 1, relative oral bioavailability study with another opioid (model compound).Setting: Single-center bioavailability trial.Participants: Twenty-four healthy white male subjects.Interventions: ADF IR formulation of an opioid and marketed IR formulation.Main Outcome Measure(s): For feasibility and in vitro studies, dissolution profiles, syringeability, particle size distribution after physical manipulation, and extractability were evaluated. For the phase 1 study, pharmacokinetic parameters were evaluated and compared for ADF IR and a marketed IR formulation.Results: After manipulation, the majority of particles from the ADF IR formulation were >500 μm and, thus, not considered suitable for intranasal abuse, while the majority of particles for the reference marketed IR formulation were <500 μm. The ADF IR formulation was resistant to syringing and preparation for potential intravenous injection. In healthy subjects, pharmacokinetics of an ADF and marketed IR formulation of an opioid were nearly identical.Conclusions: Application of HME to IR formulations led to development of products with improved mechanical resistance to manipulation for intranasal or intravenous preparation, but similar bioavailability.


Author(s):  
VISHAL YADAV ◽  
S. SATHESH KUMAR

Objective: Objective of the study was to develop tamoxifen citrate immediate release pellets by hot-melt extrusion (HME) and to study the effect of various formulation and process variables. Methods: Pellets were prepared by HME technique. Effect of various parameters such as the concentration of ethylcellulose, PEG 6000, croscarmellose sodium, and spheronization speed were studied by using Central Composite Design. Pellets were evaluated for theoretical yield (%), mean pellet size (mm), sphericity (pellips), friability (%), porosity (%), mechanical crushing force (n), and dissolution efficiency. Optimized formulation was studied for compatibility study using IR, DSC, and XRD, SEM, In vitro drug release. In vitro Cell Cytotoxicity and Viability Assay were carried out using MCF-7 (human breast cancer cells) by MTT assay. Results: Results showed that a variable such as the amount of Methyl Cellulose, PEG 6000 and Spheronization speed showed positive correlation and amount of Croscarmellose sodium showed a negative correlation with dependent variables. Optimized formulation showed Korsmeyer Peppas model as a mechanism of drug release. Value of n was found to be in between 0.77+0.04, which reveals that, release mechanism of the drug as non-Fickian transport (0.45<n<0.89). MTT results of MCF-7 cells showed that optimized immediate release pellets have maximum cytotoxicity at 80 µg/ml. Conclusion: Study concluded that HME method and materials i.e. PEG 6000 and methylcellulose can effectively use to get immediate release of tamoxifen citrate so as to increase dissolution rate and cytotoxic effect.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4982
Author(s):  
Wenjing Zhu ◽  
Wenling Fan ◽  
Xiaotong Zhang ◽  
Meiqi Gao

This study aimed to prepare a sustained-release solid dispersion of poorly water-soluble resveratrol (RES) with high melting point in a single hot melt extrusion step. A hydrophobic–hydrophilic polymeric blend (Eudragit RS and PEG6000) was used to control the release of RES. With the dispersive mixing and high shear forces of hot melt extrusion, the thermodynamic properties and dispersion of RES were changed to improve its solubility. The effects of the formulation were investigated through univariate analysis to optimize the preparation of the sustained-release solid dispersion. In vitro and in vivo studies were performed to evaluate the prepared RES/RS/PEG6000 sustained-release solid dispersion. The physical state of the solid dispersion was characterized using differential scanning calorimetry and X-ray diffraction. Surface properties of the dispersion were visualized using scanning electron microscopy, and the chemical interaction between RES and excipients was detected through Fourier-transform infrared spectroscopy. Results suggested that the optimized sustained-release solid dispersion was obtained when the mass ratio of RES-polymeric blend was 1:5, the ratio of PEG6000 was 35%, the barrel temperature was 170 °C, and the screw speed was 80 rpm. In vitro studies demonstrated that the solid dispersion showed a good sustained release effect. The cumulative release of RES reached 82.42% until 12 h and was fit by the Weibull model. In addition, the saturated solubility was 2.28 times higher than that of the bulk RES. In vitro studies demonstrated that the half-life increased from 3.78 to 7.09 h, and the bioavailability improved to 140.38%. The crystalline RES was transformed into the amorphous one, and RES was highly dispersed in the polymeric blend matrix.


Sign in / Sign up

Export Citation Format

Share Document