Sustainable and efficient skin absorption behaviour of transdermal drug: The effect of the release kinetics of permeation enhancer

Author(s):  
Jiuheng Ruan ◽  
Chao Liu ◽  
Haoyuan Song ◽  
Ting Zhong ◽  
Peng Quan ◽  
...  
2014 ◽  
Vol 22 (2) ◽  
pp. 171-176
Author(s):  
Kan WANG ◽  
Zifang WANG ◽  
Ming GAO ◽  
Yaohua HUANG ◽  
Xiaofei HAN ◽  
...  

2021 ◽  
Vol 2 ◽  
pp. 100077
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Shouvik Mondal ◽  
Debatri Roy ◽  
Amit Kumar Nayak

2021 ◽  
Vol 55 (6) ◽  
pp. 3676-3685
Author(s):  
Yu Wang ◽  
Fang Wang ◽  
Leilei Xiang ◽  
Chenggang Gu ◽  
Marc Redmile-Gordon ◽  
...  

Author(s):  
Lorenzo Lisuzzo ◽  
Giuseppe Cavallaro ◽  
Stefana Milioto ◽  
Giuseppe Lazzara

AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavity. Several techniques (TEM, FTIR spectroscopy, DLS and $$\zeta$$ ζ -potential experiments) were employed to characterize the drug filled nanoclays. Besides, release kinetics of the drugs were studied and interpreted according to the loading mechanism. This work represents a further step for the development of nanotubular carriers with tunable release feature based on the loading protocol and drug localization into the carrier. Graphic abstract The filling efficiency of halloysite nanotubes is enhanced by the reduction of the pressure conditions used in the loading protocol.


Author(s):  
Gianluca Viscusi ◽  
Giuliana Gorrasi

AbstractIn this paper gelatin beads reinforced with natural hemp hurd have been produced as pH sensitive devices for the release of eugenol, as green pesticide. The composites beads, with a mean diameter of about 1 mm, were obtained by polymer droplet gelation in sunflower oil. Thermal properties were evaluated showing no noticeable difference after the introduction of hemp hurd. Barrier properties demonstrated an improvement of hydrophobization. The introduction of 5% w/w of hemp hurd led to a reduction of sorption coefficient of about 85% compared to unloaded gelatin beads. Besides, the diffusion coefficient decreased, introducing 5% w/w of hemp hurd, from 8.91 × 10−7 to 0.77 × 10−7 cm2/s. Swelling and dissolution phenomena of gelatin beads were studied as function of pH. The swelling of gelatin beads raised as pH increased up to 2.3 g/g, 9.1 g/g and 27.33 g/g at pH 3, 7 and 12, respectively. The dissolution rate changed from 0.034 at pH 3 to 0.077 h−1 at pH 12. Release kinetics of eugenol at different pH conditions were studied. The released eugenol after 24 h is 98%, 91%, 81 and 63% w/w (pH 3), 87%, 62%, 37 and 32 wt% (pH 7) and 81%, 68%, 60 and 52 wt% (pH 12) for unloaded gelatin beads and gelatin beads with 1%, 3 and 5% of hemp hurd, respectively. The eugenol release behavior was demonstrated to be highly sensitive to the pH release medium, which allows to tune such devices as green pesticide release systems in soils with different level of acidity/basicity.


Sign in / Sign up

Export Citation Format

Share Document