filling mechanism
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jackson Wagner ◽  
Kelly Hunter ◽  
Francesco Paesani ◽  
Wei Xiong

Water capture mechanisms of zeolitic imidazolate framework ZIF-90 are revealed by differentiating the water clustering at interior interfaces of ZIF-90 and the center pore filling step, using vibrational sum-frequency generation spectroscopy (VSFG) at a one-micron spatial resolution. Spectral lineshapes of VSFG and IR spectra suggest that OD modes of heavy water in both water clustering and center pore filling steps experience similar environments, which is unexpected as weaker hydrogen bond interactions are involved in initial water clustering at interior surfaces. VSFG intensity shows similar dependence on the relative humidity as the adsorption isotherm, suggesting that water clustering and pore filling occur simultaneously. MD simulations based on MB-pol corroborate the experimental observations, indicating that water clustering and center pore filling happen nearly simultaneously within each pore, with water filling the other pores sequentially. The integration of nonlinear optics with computational simulations provides critical mechanistic insights into the pore filling mechanism that could be applied to the rational design of future MOFs.


2021 ◽  
Author(s):  
Jackson Wagner ◽  
Kelly Hunter ◽  
Francesco Paesani ◽  
Wei Xiong

Water capture mechanisms of zeolitic imidazolate framework ZIF-90 are revealed by differentiating the water clustering at interior interfaces of ZIF-90 and the center pore filling step, using vibrational sum-frequency generation spectroscopy (VSFG) at a one-micron spatial resolution. Spectral lineshapes of VSFG and IR spectra suggest that OD modes of heavy water in both water clustering and center pore filling steps experience similar environments, which is unexpected as weaker hydrogen bond interactions are involved in initial water clustering at interior surfaces. VSFG intensity shows similar dependence on the relative humidity as the adsorption isotherm, suggesting that water clustering and pore filling occur simultaneously. MD simulations based on MB-pol corroborate the experimental observations, indicating that water clustering and center pore filling happen nearly simultaneously within each pore, with water filling the other pores sequentially. The integration of nonlinear optics with computational simulations provides critical mechanistic insights into the pore filling mechanism that could be applied to the rational design of future MOFs.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yaofa Li ◽  
Gianluca Blois ◽  
Farzan Kazemifar ◽  
Razin S. Molla ◽  
Kenneth T. Christensen

Resolving pore-scale transient flow dynamics is crucial to understanding the physics underlying multiphase flow in porous media and informing large-scale predictive models. Surface properties of the porous matrix play an important role in controlling such physics, yet interfacial mechanisms remain poorly understood, in part due to a lack of direct observations. This study reports on an experimental investigation of the pore-scale flow dynamics of liquid CO2 and water in two-dimensional (2D) circular porous micromodels with different surface characteristics employing high-speed microscopic particle image velocimetry (μPIV). The design of the micromodel minimized side boundary effects due to the limited size of the domain. The high-speed μPIV technique resolved the spatial and temporal dynamics of multiphase flow of CO2 and water under reservoir-relevant conditions, for both drainage and imbibition scenarios. When CO2 displaced water in a hydrophilic micromodel (i.e., drainage), unstable capillary fingering occurred and the pore flow was dominated by successive pore-scale burst events (i.e., Haines jumps). When the same experiment was repeated in a nearly neutral wetting micromodel (i.e., weak imbibition), flow instability and fluctuations were virtually eliminated, leading to a more compact displacement pattern. Energy balance analysis indicates that the conversion efficiency between surface energy and external work is less than 30%, and that kinetic energy is a disproportionately smaller contributor to the energy budget. This is true even during a Haines jump event, which induces velocities typically two orders of magnitude higher than the bulk velocity. These novel measurements further enabled direct observations of the meniscus displacement, revealing a significant alteration of the pore filling mechanisms during drainage and imbibition. While the former typically featured burst events, which often occur only at one of the several throats connecting a pore, the latter is typically dominated by a cooperative filling mechanism involving simultaneous invasion of a pore from multiple throats. This cooperative filling mechanism leads to merging of two interfaces and releases surface energy, causing instantaneous high-speed events that are similar, yet fundamentally different from, burst events. Finally, pore-scale velocity fields were statistically analyzed to provide a quantitative measure of the role of capillary effects in these pore flows.


2021 ◽  
Vol 1937 (1) ◽  
pp. 012004
Author(s):  
J Muralidharan ◽  
S Saran ◽  
G Tamilkavi ◽  
S Thivakar ◽  
M Vivin
Keyword(s):  

2021 ◽  
Author(s):  
Lvmin Zhang ◽  
Chengze Li ◽  
Edgar Simo-Serra ◽  
Yi Ji ◽  
Tien-Tsin Wong ◽  
...  
Keyword(s):  

Author(s):  
Lorenzo Lisuzzo ◽  
Giuseppe Cavallaro ◽  
Stefana Milioto ◽  
Giuseppe Lazzara

AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavity. Several techniques (TEM, FTIR spectroscopy, DLS and $$\zeta$$ ζ -potential experiments) were employed to characterize the drug filled nanoclays. Besides, release kinetics of the drugs were studied and interpreted according to the loading mechanism. This work represents a further step for the development of nanotubular carriers with tunable release feature based on the loading protocol and drug localization into the carrier. Graphic abstract The filling efficiency of halloysite nanotubes is enhanced by the reduction of the pressure conditions used in the loading protocol.


Author(s):  
Anubrata NATH ◽  
Masahiro WATANABE ◽  
Eri TAKANE ◽  
Kenjiro TADAKUMA ◽  
Masashi KONYO ◽  
...  

2020 ◽  
Vol 58 ◽  
pp. 832-844
Author(s):  
X. Zeng ◽  
X.G. Fan ◽  
H.W. Li ◽  
M. Zhan ◽  
H.R. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document