The roles of rise and fall time in load shedding and strain partitioning under the dwell fatigue of titanium alloys with different microstructures

Author(s):  
Zebang Zheng ◽  
Pandi Zhao ◽  
Mei Zhan ◽  
Songlin Shen ◽  
Yuyang Wang ◽  
...  
2020 ◽  
Vol 321 ◽  
pp. 11066
Author(s):  
Michelle Harr ◽  
Adam Pilchak ◽  
Samantha Daly

Dual phase titanium alloys, such as Ti-6242, experience a significant reduction in fatigue lifetime when the peak load is held at each cycle. This type of sustained peak loading, also known as dwell fatigue, mimics the long periods of high mean stress experienced by titanium fan and compressor components during takeoff and cruise. The reduction in fatigue lifetime is known as the dwell debit, and is attributed to the phenomenon of load shedding. Both local microstructure and temperature are known to impact load shedding and thereby the macroscopic response of Ti-6242 when subject to dwell fatigue, but the underlying mechanisms are still under active investigation. This study utilized electron backscatter diffraction (EBSD) and digital image correlation (DIC) to characterize the role of local microstructure and temperature on load shedding during dwell fatigue. EBSD was used to determine local orientation and texture information, and DIC provided information about the heterogeneity of the strain distribution and plastic strain accumulation. Ex-situ tests were performed to investigate the link between the deformation of local microstructures and macroscopic damage. The resultant strain fields and orientation maps were statistically analyzed to provide quantitative insights into the impact of local microstructure on load shedding during dwell fatigue.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 914 ◽  
Author(s):  
Qingyuan Song ◽  
Yanqing Li ◽  
Lei Wang ◽  
Ruxu Huang ◽  
Chengqi Sun

Frequency is an important factor influencing the fatigue behavior. Regarding to the dwell fatigue, it corresponds to the effect of rise and fall time, which is also an important issue especially for the safety evaluation of structure parts under dwell fatigue loading, such as the engines of aircrafts and the pressure hulls of deep-sea submersibles. In this paper, the effect of rise and fall time (2 s, 20 s, 110 s, and 200 s) on the dwell fatigue behavior is investigated for a high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X with basket-weave microstructure. It is shown that the dwell fatigue life decreases with increasing the rise and fall time, which could be correlated by a linear relation in log–log scale for both the specimen with circular cross section and the specimen with square cross section. The rise and fall time has no influence on the crack initiation mechanism by the scanning electron microscope observation. The cracks initiate from the specimen surface and all the fracture surfaces present multiple crack initiation sites. Moreover, the facet characteristic is observed at some crack initiation sites for both the conventional fatigue and dwell fatigue tests. The paper also indicates that the dwell period of the peak stress reduces the fatigue life and the dwell fatigue life seems to be longer for the specimen with circular cross section than that of the specimen with square cross section.


2019 ◽  
Vol 811 ◽  
pp. 152040 ◽  
Author(s):  
Yan Chong ◽  
Guanyu Deng ◽  
Jangho Yi ◽  
Akinobu Shibata ◽  
Nobuhiro Tsuji

Author(s):  
Zhen Zhang ◽  
M. A. Cuddihy ◽  
F. P. E. Dunne

A temperature and rate-dependent crystal plasticity framework has been used to examine the temperature sensitivity of stress relaxation, creep and load shedding in model Ti-6Al polycrystal behaviour under dwell fatigue conditions. A temperature close to 120°C is found to lead to the strongest stress redistribution and load shedding, resulting from the coupling between crystallographic slip rate and slip system dislocation hardening. For temperatures in excess of about 230°C, grain-level load shedding from soft to hard grains diminishes because of the more rapid stress relaxation, leading ultimately to the diminution of the load shedding and hence, it is argued, the elimination of the dwell debit. Under conditions of cyclic stress dwell, at temperatures between 20°C and 230°C for which load shedding occurs, the rate-dependent accumulation of local slip by ratcheting is shown to lead to the progressive cycle-by-cycle redistribution of stress from soft to hard grains. This phenomenon is termed cyclic load shedding since it also depends on the material's creep response, but develops over and above the well-known dwell load shedding, thus providing an additional rationale for the incubation of facet nucleation.


2018 ◽  
Vol 111 ◽  
pp. 234-252 ◽  
Author(s):  
Zebang Zheng ◽  
Adam Stapleton ◽  
Kate Fox ◽  
Fionn P.E. Dunne

Author(s):  
T. B. Britton ◽  
F. P. E. Dunne ◽  
A. J. Wilkinson

This is an overview of micromechanical deformation mechanisms in hexagonal close-packed metals. We start with an in-depth discussion of single-crystal behaviour concerning crystallographic slip, plastic anisotropy and deformation twinning. We move on to discuss some complexities involved in polycrystalline deformation and modelling approaches, focusing on rate effects in titanium alloys that are thought to play a significant role in dwell fatigue. We finish our review with a brief commentary on current understanding and state-of-the-art techniques, and outline some key areas where further study is recommended.


Sign in / Sign up

Export Citation Format

Share Document