scholarly journals Alterations in Functional Connectivity in the Locus Coeruleus-Norepinephrine System in Chronic Insomnia Disorder

2021 ◽  
Vol 168 ◽  
pp. S168-S169
Author(s):  
Liang Gong ◽  
Jian Wang ◽  
Bei Zhang
2021 ◽  
Vol 15 ◽  
Author(s):  
Liang Gong ◽  
Min Shi ◽  
Jian Wang ◽  
Ronghua Xu ◽  
Siyi Yu ◽  
...  

BackgroundMental syndromes such as anxiety and depression are common comorbidities in patients with chronic insomnia disorder (CID). The locus coeruleus noradrenergic (LC-NE) system is considered to be crucial for modulation of emotion and sleep/wake cycle. LC-NE system is also a critical mediator of the stress-induced anxiety. However, whether the LC-NE system contributes to the underlying mechanism linking insomnia and these comorbidities remain unclear. This study aimed to investigate the LC-NE system alterations in patients with insomnia and its relationship with depression and anxiety symptoms.Materials and MethodsSeventy patients with CID and 63 matched good sleep control (GSC) subjects were recruited and underwent resting-state functional MRI scan. LC-NE functional network was constructed by using seed-based functional connectivity (FC) analysis. The alterations in LC-NE FC network in patients with CID and their clinical significance was explored.ResultsCompared with GSC group, the CID group showed decreased left LC-NE FC in the left inferior frontal gyrus, while they had increased LC-NE FC in the left supramarginal gyrus and the left middle occipital gyrus (MOG). For the right LC-NE FC network, decreased FC was found in left dorsal anterior cingulate cortex (dACC). Interesting, the increased LC-NE FC was located in sensory cortex, while decreased LC-NE FC was located in frontal control cortex. In addition, the FC between the left LC and left MOG was associated with the duration of the disease, while abnormal FC between right LC and left dACC was associated with the anxiety scores in patients with CID.ConclusionThe present study found abnormal LC-NE functional network in patients with CID, and the altered LC-NE function in dACC was associated with anxiety symptoms in CID. The present study substantially extended our understanding of the neuropathological basis of CID and provided the potential treatment target for CID patients who also had anxiety.


2018 ◽  
Vol Volume 14 ◽  
pp. 1229-1240 ◽  
Author(s):  
Fuqing Zhou ◽  
Yanlin Zhao ◽  
Muhua Huang ◽  
Xianjun Zeng ◽  
Bo Wang ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Song Cao ◽  
Daniel W. Fisher ◽  
Guadalupe Rodriguez ◽  
Tian Yu ◽  
Hongxin Dong

Abstract Background The role of microglia in Alzheimer’s disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. Methods In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. Results Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. Conclusion These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jennifer A. Ross ◽  
Elisabeth J. Van Bockstaele

Arousal may be understood on a spectrum, with excessive sleepiness, cognitive dysfunction, and inattention on one side, a wakeful state in the middle, and hypervigilance, panic, and psychosis on the other side. However, historically, the concepts of arousal and stress have been challenging to define as measurable experimental variables. Divergent efforts to study these subjects have given rise to several disciplines, including neurobiology, neuroendocrinology, and cognitive neuroscience. We discuss technological advancements that chronologically led to our current understanding of the arousal system, focusing on the multifaceted nucleus locus coeruleus. We share our contemporary perspective and the hypotheses of others in the context of our current technological capabilities and future developments that will be required to move forward in this area of research.


Sign in / Sign up

Export Citation Format

Share Document