scholarly journals Erratum to: Hao Y, Ran Y, Lu B, et al. Therapeutic Effects of Human Umbilical Cord—derived Mesenchymal Stem Cells on Canine Radiation-Induced Lung Injury. Int J Radiat Oncol Biol Phys 2018;102:407-416.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Chunyang Zhang ◽  
Yan Zhu ◽  
Ji Wang ◽  
Lisheng Hou ◽  
Wei Li ◽  
...  

Less quantity of transplanted mesenchymal stem cells (MSCs) influences the therapeutic effects on radiation-induced lung injury (RILI). Previous studies have demonstrated that MSCs overexpressing Chemokine (C-X-C motif) receptor 4 (CXCR4) could increase the quantity of transplanted cells to local tissues. In the present study, we conducted overexpressing CXCR4 human umbilical cord mesenchymal stem cell (HUMSC) therapy for RILI. C57BL mice received single dose of thoracic irradiation with 13 Gy of X-rays and then were administered saline, control HUMSCs, or CXCR4-overexpressing HUMSCs via tail vein. Transfection with CXCR4 enhanced the quantity of transplanted HUMSCs in the radiation-induced injured lung tissues. CXCR4-overexpressing HUMSCs not only improved histopathological changes but also decreased the radiation-induced expression of SDF-1, TGF-β1, α-SMA, and collagen I and inhibited the radiation-induced decreased expression of E-cadherin. Transplanted CXCR4-overexpressing HUMSCs also could express pro-SP-C, indicated adopting the feature of ATII. These finding suggests that CXCR4-overexpressing HUMSCs enhance the protection against RILI and may be a promising strategy for RILI treatment.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hua Zhu ◽  
Yi Xiong ◽  
Yunqiu Xia ◽  
Rong Zhang ◽  
Daiyin Tian ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hsiu-Chu Chou ◽  
Chien-Hsiang Chang ◽  
Chien-Han Chen ◽  
Willie Lin ◽  
Chung-Ming Chen

Abstract Background Surfactant therapy is a standard of care for preterm infants with respiratory distress and reduces the incidence of death and bronchopulmonary dysplasia in these patients. Our previous study found that mesenchymal stem cells (MSCs) attenuated hyperoxia-induced lung injury and the combination therapy of surfactant and human umbilical cord-derived MSCs (hUC-MSCs) did not have additive effects on hyperoxia-induced lung injury in neonatal rats. The aim is to evaluate the effects of 2 consecutive days of intratracheal administration of surfactant and hUC-MSCs on hyperoxia-induced lung injury. Methods Neonatal Sprague Dawley rats were reared in either room air (RA) or hyperoxia (85% O2) from postnatal days 1 to 14. On postnatal day 4, the rats received intratracheal injections of either 20 μL of normal saline (NS) or 20 μL of surfactant. On postnatal day 5, the rats reared in RA received intratracheal NS, and the rats reared in O2 received intratracheal NS or hUC-MSCs (3 × 104 or 3 × 105 cells). Six study groups were examined: RA + NS + NS, RA + surfactant + NS, O2 + NS + NS, O2 + surfactant + NS, O2 + surfactant + hUC-MSCs (3 × 104 cells), and O2 + surfactant + hUC-MSCs (3 × 105 cells). The lungs were excised for histological, western blot, and cytokine analyses. Results The rats reared in hyperoxia and treated with NS yielded significantly higher mean linear intercepts (MLIs) and interleukin (IL)-1β and IL-6 levels and significantly lower vascular endothelial growth factors (VEGFs), platelet-derived growth factor protein expression, and vascular density than did those reared in RA and treated with NS or surfactant. The lowered MLIs and cytokines and the increased VEGF expression and vascular density indicated that the surfactant and surfactant + hUC-MSCs (3 × 104 cells) treatment attenuated hyperoxia-induced lung injury. The surfactant + hUC-MSCs (3 × 105 cells) group exhibited a significantly lower MLI and significantly higher VEGF expression and vascular density than the surfactant + hUC-MSCs (3 × 104 cells) group did. Conclusions Consecutive daily administration of intratracheal surfactant and hUC-MSCs can be an effective regimen for treating hyperoxia-induced lung injury in neonates.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Li Jinfeng ◽  
Wang Yunliang ◽  
Liu Xinshan ◽  
Wang Yutong ◽  
Wang Shanshan ◽  
...  

The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) activated by curcumin (CUR) on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+), a cell model of Parkinson’s disease (PD). The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR) were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH) and microtubule associated protein-2 (MAP2) and significantly decreased the expression of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD.


2015 ◽  
Vol 35 (2) ◽  
pp. 731-738 ◽  
Author(s):  
CHENGCHENG XIA ◽  
PENGYU CHANG ◽  
YUYU ZHANG ◽  
WEIYAN SHI ◽  
BIN LIU ◽  
...  

2009 ◽  
Vol 175 (1) ◽  
pp. 303-313 ◽  
Author(s):  
Yuben Moodley ◽  
Daniel Atienza ◽  
Ursula Manuelpillai ◽  
Chrishan S. Samuel ◽  
Jorge Tchongue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document