Effect of interface curvature on isothermal heat transfer in a hydrophobic microchannel with transverse ribs and cavities

2021 ◽  
Vol 167 ◽  
pp. 107014
Author(s):  
M.G. Arun ◽  
D. Dilip ◽  
S. Kumar Ranjith
Author(s):  
Ainul Haque ◽  
Ameeya Kumar Nayak

In this paper, a mathematical model has been developed to analyze the combined electroosmotic and pressure driven flow of power law fluids in a micro channel in the presence of Joule heating effects. The effects of Navier slip boundary condition and thermal radiation is examined for effective heat transfer in a hydrophobic microchannel. The analytical treatment has been performed for fluid flow and heat transfer effects in terms of flow governing parameters. This study highlights the effect of channel height to the electric double layer thickness and observed the flow variation due to heat transfer effect with the available scientific data. For a pure EOF, velocity slip have more significant role to get a maximum flow rate as expected. For both pseudo-plastic and dilatent fluids Nusselt number is decreased with the increment of the hydrophobic parameter and dimensionless pressure gradient where as increment in Joule heating effect enhance the heat transfer rate.


Author(s):  
Arya Chatterjee ◽  
Joel L. Plawsky ◽  
Peter C. Wayner

The constrained vapor bubble (CVB) experiment is an experiment to study the effect of low Bond numbers on the microscopic and macroscopic transport in a heat pipe. The microscopic (∼30 μm) contact line region, where the solid, liquid and vapor phase meet, is of fundamental importance in this study of fluid flow and heat transfer. This region, while dominated by interfacial forces, is controlled by the boundary conditions set by physics at the macroscopic scale (∼1 mm) on one side and the microscopic scale (∼ 0.1 μm) on the other. Recent experimental investigation by our group has shown that an effective means of changing the microscopic boundary conditions (the wettability of the fluid) is by introducing surface roughness at the nanoscale to the solid surface. Here we attempt to examine some of the experimental results in the light of a model. The model solves a nonlinear, fourth order evolution equation for the film thickness. It also provides the contact angle, interface curvature and heat transfer profile in the contact line region. The model agrees well with the experimental data. The presence of hydrodynamic slip at the solid liquid interface seems to improve the agreement.


Soft Matter ◽  
2009 ◽  
Vol 5 (12) ◽  
pp. 2407 ◽  
Author(s):  
Anders Lervik ◽  
Fernando Bresme ◽  
Signe Kjelstrup

2022 ◽  
Author(s):  
Blake Wilson ◽  
Steven Nielsen ◽  
Jaona Randrianalisoa ◽  
Zhenpeng Qin

Plasmonic gold nanoparticles (AuNPs) can convert laser irradiation into thermal energy and act as nano heaters in avariety of applications. Although the AuNP-water interface is an essential part of the plasmonic heating process,there is a lack of mechanistic understanding of how interface curvature and the heating itself impact interfacial heattransfer. Here, we report atomistic molecular dynamics simulations that investigate heat transfer through nanoscalegold-water interfaces. We confirmed that interfacial heat transfer is an important part of AuNP heat dissipation inAuNPs with diameter less than 100 nm, particularly for small particles with diameter≤10 nm. To account forvariations in the gold-water interaction strength reported in the literature, and to implicitly account for differentsurface functionalizations, we modeled a moderate and a poor AuNP-water wetting scenario. We found that thethermal interface conductance increases linearly with interface curvature regardless of the gold wettability, while itincreases non-linearly, or remains constant, with the applied heat flux under different wetting conditions. Our analysissuggests the curvature dependence of the interface conductance is due to the changes in interfacial water adsorption,while the temperature dependence is caused by heat-induced shifts in the distribution of water vibrational states.Our study advances the current understanding of interface thermal conductance for a broad range of applications.


Sign in / Sign up

Export Citation Format

Share Document