Natural convection onset during melting of phase change materials: Part II – Effects of Fourier, Grashof, and Rayleigh numbers

2021 ◽  
Vol 170 ◽  
pp. 107062 ◽  
Author(s):  
Mohammad Azad ◽  
Dominic Groulx ◽  
Adam Donaldson
Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This numerical study investigates the effect of using a blend of micro-encapsulated phase change materials (MEPCMs) on the heat transfer characteristics of a liquid in a rectangular enclosure driven by natural convection. A comparison has been made between the cases of using single component MEPCM slurry and a blend of two-component MEPCM slurry. The natural convection is generated by the temperature difference between two vertical walls of the enclosure maintained at constant temperatures. Each of the two phase change materials store latent heat at a specific range of temperatures. During phase change of the PCM, the effective density of the slurry varies. This results in thermal expansion and hence a buoyancy driven flow. The effects of MEPCM concentration in the slurry and changes in the operating conditions such as the wall temperatures compared to that of pure water have been studied. The MEPCM latent heat and the increased volumetric thermal expansion coefficient during phase change of the MEPCM play a major role in this heat transfer augmentation.


Author(s):  
Li-Wu Fan ◽  
Liang Zhang ◽  
Zi-Tao Yu ◽  
Xu Xu ◽  
Ya-Cai Hu ◽  
...  

A numerical study of constrained melting of nanostructure-enhanced phase change materials (NEPCM) consisting of eicosane and various loadings of CNTs in a rectangular cavity heated from below was performed. Assuming that the NEPCM are single-phase PCMs with homogeneous thermophysical properties, the problem was solved using a finite volume method based on the enthalpy-porosity scheme for solid-liquid phase change. The effective thermophysical properties of NEPCM were predicted using the mixture models and empirical equation with respect to the loading of CNTs. Three nominal Grashof numbers corresponding to three sizes of the cavity were considered. Evolutions of the constrained melting processes were presented by means of snapshots of the temperature contour at representative time instants. The melting rates and local heat transfer along the heated bottom were compared quantitatively based on the variations of the instantaneous liquid fraction and average Nusselt number over the bottom during melting, respectively. It was shown that at a given size of the cavity, melting was expedited as more CNTs were introduced. The expediting of melting was mainly attributed to the enhanced thermal conductivity and lowering of latent heat of fusion of NEPCM. The inclusion of CNTs, however, increases considerably the viscosity of melted NEPCM, which in turn leads to less significant natural convection effect during melting. As a result, increase of loading of CNTs was shown to lead to two competing effects. The feasibility of NEPCM in melting is justified when the enhanced heat conduction overweighs the suppressed natural convection.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Li-Wu Fan ◽  
Zi-Qin Zhu ◽  
Min-Jie Liu ◽  
Can-Ling Xu ◽  
Yi Zeng ◽  
...  

The classical problem of constrained melting heat transfer of a phase change material (PCM) inside a spherical capsule was revisited experimentally in the presence of nanoscale thermal conductivity fillers. The model nano-enhanced PCM (NePCM) samples were prepared by dispersing self-synthesized graphite nanosheets (GNSs) into 1-dodecanol at various loadings up to 1% by mass. The melting experiments were carried out using an indirect method by measuring the instantaneous volume expansion upon melting. The data analysis was performed based on the homogeneous, single-component assumption for NePCM with modified thermophysical properties. It was shown that the introduction of nanofillers increases the effective thermal conductivity of NePCM, in accompaniment with an undesirable rise in viscosity. The dramatic viscosity growth, up to over 100-fold at the highest loading, deteriorates significantly the intensity of natural convection, which was identified as the dominant mode of heat transfer during constrained melting. The loss in natural convection was found to overweigh the decent enhancement in heat conduction, thus resulting in decelerated melting in the presence of nanofillers. Except for the case with the lowest heating boundary temperature, a monotonous slowing trend of melting was observed with increasing the loading.


Sign in / Sign up

Export Citation Format

Share Document