scholarly journals Theoretical analysis of convective heat flux structure in the incompressible turbulent boundary layer on a porous plate with uniform injection and suction

2022 ◽  
Vol 171 ◽  
pp. 107264
Author(s):  
Bo Zhao ◽  
Kaiyong Li ◽  
Yipeng Wang ◽  
Ziyu Wang
2015 ◽  
Vol 72 (9) ◽  
pp. 1621-1627 ◽  
Author(s):  
P. Pittaway ◽  
V. Martínez-Alvarez ◽  
N. Hancock

The highly variable performance of artificial monolayers in reducing evaporation from water storages has been attributed to wind speed and wave turbulence. Other factors operating at the interfacial boundary layer have seldom been considered. In this paper, two physical shade covers differing in porosity and reflectivity were suspended over 10 m diameter water tanks to attenuate wind and wave turbulence. The monolayer octadecanol was applied to one of the covered tanks, and micrometeorological conditions above and below the covers were monitored to characterise diurnal variation in the energy balance. A high downward (air-to-water) convective heat flux developed under the black cover during the day, whereas diurnal variation in the heat flux under the more reflective, wind-permeable white cover was much less. Hourly air and water temperature profiles under the covers over 3 days when forced convection was minimal (low wind speed) were selected for analysis. Monolayer application reduced temperature gain in surface water under a downward convective heat flux, and conversely reduced temperature loss under an upward convective heat flux. This ‘dual property’ may explain why repeat application of an artificial monolayer to retard evaporative loss (reducing latent heat loss) does not inevitably increase water temperature.


1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


Author(s):  
James T. Nakos ◽  
Alexander L. Brown

Commercial Schmidt-Boelter heat flux gages are always calibrated by using a radiative heat flux source where convection is minimized. This is because one can establish a reliable link to a National Institute of Standards and Technology (NIST) calibration standard. To the authors’ knowledge, no NIST traceable link exists for convective heat flux calibration. When heat flux gages are used in typical applications, convection is often not negligible. It has been common practice to assume that the sensitivity coefficient supplied by the manufacturer also applies for convective environments. This assumption is believed to be incorrect. If incorrect, this would result in uncertainties larger than typically reported (e.g., ±3%). This paper analyzes the heat transfer from an idealized Schmidt-Boelter heat flux gage. The analysis shows that the theoretical sensitivity coefficients in purely radiative and convective environments are not the same and, in fact, differ by the emissivity of the gage surface. The implication of this difference is that the accuracy specification supplied by the manufacturer (typically ± 3%) is not correct for measurement applications where convection is not negligible.


Sign in / Sign up

Export Citation Format

Share Document