flux calibration
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 163 (2) ◽  
pp. 46
Author(s):  
Kate Y. L. Su ◽  
G. H. Rieke ◽  
M. Marengo ◽  
Everett Schlawin

Abstract We report Spitzer 3.6 and 4.5 μm photometry of 11 bright stars relative to Sirius, exploiting the unique optical stability of the Spitzer Space Telescope point-spread function (PSF). Spitzer's extremely stable beryllium optics in its isothermal environment enables precise comparisons in the wings of the PSF from heavily saturated stars. These bright stars stand as the primary sample to improve stellar models, and to transfer the absolute flux calibration of bright standard stars to a sample of fainter standards useful for missions like JWST and for large ground-based telescopes. We demonstrate that better than 1% relative photometry can be achieved using the PSF wing technique in the radial range of 20″–100″ for stars that are fainter than Sirius by 8 mag (from outside the saturated core to a large radius where a high signal-to-noise ratio profile can still be obtained). We test our results by (1) comparing the [3.6]−[4.5] color with that expected between the WISE W1 and W2 bands, (2) comparing with stars where there is accurate K S photometry, and (3) also comparing with relative fluxes obtained with the DIRBE instrument on COBE. These tests confirm that relative photometry is achieved to better than 1%.


2021 ◽  
Vol 258 (1) ◽  
pp. 9
Author(s):  
Li-Li Wang ◽  
Shi-Yin Shen ◽  
A-Li Luo ◽  
Guang-Jun Yang ◽  
Ning Gai ◽  
...  

Abstract We first derive the stellar population properties: age and metallicity for ∼43,000 low redshift galaxies in the DR7 of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, which have no spectroscopic observations in the Sloan Digital Sky Survey (SDSS). We employ a fitting procedure based on the small-scale features of galaxy spectra so as to avoid possible biases from the uncertain flux calibration of the LAMOST spectroscopy. We show that our algorithm can successfully recover the average age and metallicity of the stellar populations of galaxies down to signal-to-noise ratio ≥5 through testing on both mock galaxies and real galaxies comprising LAMOST and their SDSS counterparts. We provide a catalog of the age and metallicity for ∼43,000 LAMOST galaxies online. As a demonstration of the scientific application of this catalog, we present the Holmberg effect on both age and metallicity of a sample of galaxies in galaxy pairs.


Author(s):  
Shuxin Chen ◽  
Weimin Sun ◽  
Ying He

Abstract Measuring the stellar parameters of A-type stars is more difficult than FGK stars because of the sparse features in their spectra and the degeneracy between effective temperature (Teff ) and gravity (logg). Modeling the relationship between fundamental stellar parameters and features through Machine Learning is possible because we can employ the advantage of big data rather than sparse known features. As soon as the model is successfully trained, it can be an efficient approach for predicting Teff and logg for A-type stars especially when there is large uncertainty in the continuum caused by flux calibration or extinction. In this paper, A- type stars are selected from LAMOST DR7 with signal-to-noise ratio greater than 50 and the Teff ranging within 7000K to 8500K. We perform the Random Forest (RF) algorithm, one of the most widely used Machine Learning algorithms to establish the regressio,relationship between the flux of all wavelengths and their corresponding stellar parameters((Teff ) and (logg) respectively). The trained RF model not only can regress the stellar parameters but also can obtain the rank of the wavelength based on their sensibility to parameters.According to the rankings, we define line indices by merging adjacent wavelengths. The objectively defined line indices in this work are amendments to Lick indices including some weak lines. We use the Support Vector Regression algorithm based on our new defined line indices to measure the temperature and gravity and use some common stars from Simbad to evaluate our result. In addition, the Gaia HR diagram is used for checking the accuracy of Teff and logg.


Author(s):  
E Troja ◽  
B O’Connor ◽  
G Ryan ◽  
L Piro ◽  
R Ricci ◽  
...  

Abstract X-ray emission from the gravitational wave transient GW170817 is well described as non-thermal afterglow radiation produced by a structured relativistic jet viewed off-axis. We show that the X-ray counterpart continues to be detected at 3.3 years after the merger. Such long-lasting signal is not a prediction of the earlier jet models characterized by a narrow jet core and a viewing angle ≈20 deg, and is spurring a renewed interest in the origin of the X-ray emission. We present a comprehensive analysis of the X-ray dataset aimed at clarifying existing discrepancies in the literature, and in particular the presence of an X-ray rebrightening at late times. Our analysis does not find evidence for an increase in the X-ray flux, but confirms a growing tension between the observations and the jet model. Further observations at radio and X-ray wavelengths would be critical to break the degeneracy between models.


Author(s):  
G Altavilla ◽  
S Marinoni ◽  
E Pancino ◽  
S Galleti ◽  
M Bellazzini ◽  
...  

Abstract We present Johnson-Kron-Cousins BVRI photometry of 228 candidate spectrophotometric standard stars for the external (absolute) flux calibration of Gaia data. The data were gathered as part of a ten-year observing campaign with the goal of building the external grid of flux standards for Gaia and we obtained absolute photometry, relative photometry for constancy monitoring, and spectrophotometry. Preliminary releases of the flux tables were used to calibrate the first two Gaia releases. This paper focuses on the imaging frames observed in good sky conditions (about 9100). The photometry will be used to validate the ground-based flux tables of the Gaia spectrophotometric standard stars and to correct the spectra obtained in non-perfectly photometric observing conditions for small zeropoint variations. The absolute photometry presented here is tied to the Landolt standard stars system to ≃1 per cent or better, depending on the photometric band. Extensive comparisons with various literature sources show an overall ≃1 per cent agreement, which appears to be the current limit in the accuracy of flux calibrations across various samples and techniques in the literature. The Gaia photometric precision is presently of the order of 0.1 per cent or better, thus various ideas for the improvement of photometric calibration accuracy are discussed.


2020 ◽  
Vol 160 (6) ◽  
pp. 270
Author(s):  
Logan Francis ◽  
Doug Johnstone ◽  
Gregory Herczeg ◽  
Todd R. Hunter ◽  
Daniel Harsono

2020 ◽  
Vol 160 (1) ◽  
pp. 21
Author(s):  
Ralph C. Bohlin ◽  
Ivan Hubeny ◽  
Thomas Rauch

Sign in / Sign up

Export Citation Format

Share Document