scholarly journals Retinal network characterization through fundus image processing: Significant point identification on vessel centerline

2017 ◽  
Vol 59 ◽  
pp. 50-64 ◽  
Author(s):  
S. Morales ◽  
V. Naranjo ◽  
J. Angulo ◽  
A.G. Legaz-Aparicio ◽  
R. Verdú-Monedero
Author(s):  
Rubina Sarki ◽  
Khandakar Ahmed ◽  
Hua Wang ◽  
Yanchun Zhang ◽  
Jiangang Ma ◽  
...  

AbstractDiabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.


2021 ◽  
Author(s):  
Shima Mohammadali Pishnamaz

Ophthalmologists have widely used retinal fundus imaging systems to examine the health of the optic nerve, vitreous, macula, retina and their blood vessels. Many critical diseases, such as glaucoma and diabetic retinopathy, can be diagnosed by analyzing retinal fundus images. Retinal image-based glaucoma detection is a comprehensive diagnostic approach that examines the head cup-to-disc ratio (CDR) as an important indicator for detecting the presence and the extent of glaucoma in a patient. The accurate segmentations of the optic disc (OD) and optic cup (OC) are critical for the calculation of CDR. Machine learning based algorithms can be very helpful to efficiently exploit the vast amounts of retinal fundus data. In this thesis project, the main goal is to develop image processing and machine learning algorithms to automatically detect OD and OC from fundus images. This goal has been achieved by developing and applying several image enhancement techniques. First, an algorithm is proposed and tested on several fundus images to detect OD. The proposed algorithm is based on a combination of Contrast Limited Adaptive Histogram Equalization (CLAHE), Alternating Sequential Filters (ASF), thresholding, and Circular Hough Transform (CHT) methods. The results section highlights that the proposed algorithm is highly efficient in segmentation of OD from other parts of the fundus image. Several classification and modeling methods are studied in order to classify detected OD into OC and non-OC regions. In this thesis project three main ensemble modeling algorithms are studied to segment OC. The studied ensemble models are Random Forest, Gradient Boosting Machines (GBM), and Extreme Gradient Boosting Machines (XGBoost). The comparison between these models shows that they have more accurate results than conventional classification methods such as Logistic Regression (LR) or Support Vector Machines (SVM). This study shows that XGBoost is the fastest and most accurate approach to segment optic cup within the optic disc region.


Author(s):  
Jufriadif Na'am ◽  
Johan Harlan ◽  
Irawadi Putra ◽  
Romi Hardianto ◽  
Mutiana Pratiwi

The Region of interest (ROI) of the fundus photography is an important task in medical image processing. It contains a lot of information related to the diagnosis of the retinal disease. So the determination of this ROI is a very influential first step in fundus image processing later. This research proposed a threshold method of segmentation to determine ROI of the fundus photography automatically. Data to be elaborated were the fundus photography’s of 13 patients, captured using Nonmyd7 camera of Kowa Company Ltd in Dr. M. Djamil Hospital, Padang. The results of this processing could determine ROI automatically. The automatic cropping successfully omits as much as possible the non-medical areas shown as darkbackground, while still maintaining the whole medical areas, comprised the posterior pole of retina captured through the pupil. Thus, this method is  helpful in further image processing of posterior areas. We hope that this research will be useful for researchers.


Sign in / Sign up

Export Citation Format

Share Document