scholarly journals EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers

2021 ◽  
Vol 22 ◽  
pp. 100505
Author(s):  
Prottoy Saha ◽  
Muhammad Sheikh Sadi ◽  
Md. Milon Islam
Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron N. Shugar ◽  
B. Lee Drake ◽  
Greg Kelley

AbstractAn innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identification is imperative to assess illegally logged and transported lumber. Alternative options for identification can be time consuming and require some level of sampling. This non-invasive technique offers a viable, cost-effective alternative to rapidly and accurately identify timber in efforts to support environmental protection laws and regulations.


2020 ◽  
Author(s):  
Kadi L. Saar ◽  
Alexey S. Morgunov ◽  
Runzhang Qi ◽  
William E. Arter ◽  
Georg Krainer ◽  
...  

AbstractIntracellular phase separation of proteins into biomolecular condensates is increasingly recognised as an important phenomenon for cellular compartmentalisation and regulation of biological function. Different hypotheses about the parameters that determine the tendency of proteins to form condensates have been proposed with some of them probed experimentally through the use of constructs generated by sequence alterations. To broaden the scope of these observations, here, we established an in silico strategy for understanding on a global level the associations between protein sequence and condensate formation, and used this information to construct machine learning classifiers for predicting liquid–liquid phase separation (LLPS) from protein sequence. Our analysis highlighted that LLPS–prone sequences are more disordered, hydrophobic and of lower Shannon entropy than sequences in the Protein Data Bank or the Swiss-Prot database, and have their disordered regions enriched in polar, aromatic and charged residues. Using these determining features together with neural network based word2vec sequence embeddings, we developed machine learning classifiers for predicting protein condensate formation. Our model, trained to distinguish LLPS-prone sequences from structured proteins, achieved high accuracy (93%; 25-fold cross-validation) and identified condensate forming sequences from external independent test data at 97% sensitivity. Moreover, in combination with a classifier that had developed a nuanced insight into the features governing protein phase behaviour by learning to distinguish between sequences of varying LLPS propensity, the sensitivity was supplemented with high specificity (approximated ROC–AUC of 0.85). These results provide a platform rooted in molecular principles for understanding protein phase behaviour. The predictor is accessible from https://deephase.ch.cam.ac.uk/.Significance StatementThe tendency of many cellular proteins to form protein-rich biomolecular condensates underlies the formation of subcellular compartments and has been linked to various physiological functions. Understanding the molecular basis of this fundamental process and predicting protein phase behaviour have therefore become important objectives. To develop a global understanding of how protein sequence determines its phase behaviour, here, we constructed bespoke datasets of proteins of varying phase separation propensity and identified explicit biophysical and sequence-specific features common to phase separating proteins. Moreover, by combining this insight with neural network based sequence embeddings, we trained machine learning classifiers that identified phase separating sequences with high accuracy, including from independent external test data. The predictor is available from https://deephase.ch.cam.ac.uk/.


Sign in / Sign up

Export Citation Format

Share Document