Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products

2017 ◽  
Vol 95 ◽  
pp. 704-717 ◽  
Author(s):  
Anil Kumar Varma ◽  
Prasenjit Mondal
2020 ◽  
Vol 1008 ◽  
pp. 159-167
Author(s):  
Ahmed Gaber H. Saif ◽  
Seddik S. Wahid ◽  
Mohamed R.O. Ali

The objective of the present work is to investigate the pyrolysis of sugarcane bagasse in a semi-batch reactor and study the effect of process parameters of pyrolysis on the products yield to determine optimum parameters for maximum bio-oil production. Parameters of the pyrolysis process such as temperature, particle size of sugarcane bagasse and flow rate of nitrogen (N2) have been varied as 350–600 °C, 0.25–2 mm and 100–500 cm3/min, respectively. According to the various pyrolysis conditions applied in the experimental studies, the obtained oil, char and gas yields ranged between 38 and 45 wt%, 24 and 36 wt%, and 23 and 37 wt%, respectively. The maximum pyrolysis bio-oil yield of 45 wt% was achieved at temperature of 500 °C, particle size of 0.5 -1 mm with nitrogen(N2) flow rate of 200 cm3/min. Based on the results captured under this study's pyrolysis conditions, temperature is considered to be the most important parameter for product distribution. As the increases of the pyrolysis temperature the bio-char yield decreased and increase of gas yield. The bio-oil yield increases with increasing the temperature, reaches a maximum value at about 500 °C and reduces thereafter at higher temperature is expect due to secondary cracking reactions of the volatiles, which results produce a higher gaseous yield.


2020 ◽  
Author(s):  
Ahmed Gaber H. Saif ◽  
Mohamed R. O. Ali ◽  
Seddik S. Wahid

Abstract The objective of the present work is to investigate the pyrolysis of sugarcane bagasse in a semi-batch reactor and study the effect of process parameters of pyrolysis on the products yield to determine optimum parameters for maximum bio-oil production. Parameters of the pyrolysis process such as temperature, particle size of sugarcane bagasse and flow rate of nitrogen (N2) have been varied as 350–600 ºC, 0.25–2 mm and 100–500 cm3/min, respectively. According to the various pyrolysis conditions applied in the experimental studies, the obtained oil, char and gas yields ranged between 38 and 45 wt%, 24 and 36 wt%, and 23 and 37 wt%, respectively. The maximum pyrolysis bio-oil yield of 45 wt% was achieved at temperature of 500 ºC, particle size of 0.5 -1 mm with nitrogen(N2) flow rate of 200 cm3/min. Based on the results captured under this study's pyrolysis conditions, temperature is considered to be the most important parameter for product distribution. As the increases of the pyrolysis temperature the bio-char yield decreased and increase of gas yield. The bio-oil yield increases with increasing the temperature, reaches a maximum value at about 500 ºC and reduces thereafter at higher temperature is expected due to secondary cracking reactions of the volatiles, which results produce a higher gaseous yield.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 95-98 ◽  
Author(s):  
Nancy G. Love ◽  
Mary E. Rust ◽  
Kathy C. Terlesky

An anaerobic enrichment culture was developed from an anoxic/anaerobic/aerobic activated sludge sequencing batch reactor using methyl ethyl ketoxime (MEKO), a potent nitrification inhibitor, as the sole carbon and energy source in the absence of molecular oxygen and nitrate. The enrichment culture was gradually fed decreasing amounts of biogenic organic compounds and increasing concentrations of MEKO over 23 days until the cultures metabolized the oxime as the sole carbon source; the cultures were maintained for an additional 41 days on MEKO alone. Turbidity stabilized at approximately 100 mg/l total suspended solids. Growth on selective media plates confirmed that the microorganisms were utilizing the MEKO as the sole carbon and energy source. The time frame required for growth indicated that the kinetics for MEKO degradation are slow. A batch test indicated that dissolved organic carbon decreased at a rate comparable to MEKO consumption, while sulfate was not consumed. The nature of the electron acceptor in anaerobic MEKO metabolism is unclear, but it is hypothesized that the MEKO is hydrolyzed intracellularly to form methyl ethyl ketone and hydroxylamine which serve as electron donor and electron acceptor, respectively.


2021 ◽  
Vol 291 ◽  
pp. 112631
Author(s):  
Franciele Pereira Camargo ◽  
Isabel Kimiko Sakamoto ◽  
Tiago Palladino Delforno ◽  
Mahendra Mariadassou ◽  
Valentin Loux ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sivarama Krishna Lakkaboyana ◽  
Khantong Soontarapa ◽  
Nabel Kalel Asmel ◽  
Vinay Kumar ◽  
Ravi Kumar Marella ◽  
...  

AbstractThe present study focused on the synthesis of copper hydroxide nanowires decorated on activated carbon (Cu(OH)2-NWs-PVA-AC). The obtained Cu(OH)2-NWs-PVA-AC Nano-composite was distinguished by XRD, SEM, EDX, BET, FTIR and XPS respectively. Besides, different variables such as solution pH, and initial dye concentration, contact time, and temperature were performed on the adsorption efficiency of MB in a small batch reactor. Further, the experimental results are analyzed by various kinetic models via PFO, PSO, intra-particle diffusion and Elovich models, and the results revealed that among the kinetic models, PSO shows more suitability. In addition, different adsorption isotherms were applied to the obtained experimental data and found that Langmuir–Freundlich and Langmuir isotherm were best fits with the maximum adsorption capacity of 139.9 and 107.6 mg/g, respectively. The Nano-composite has outstanding MB removal efficiency of 94–98.5% with a span of 10 min. and decent adsorption of about 98.5% at a pH of 10. Thermodynamic constants like Gibbs free energy, entropy, and enthalpy were analyzed from the temperature reliance. The results reveal the adsorption processes are spontaneous and exothermic in nature. The high negative value of ΔG° (− 44.11 to − 48.86 kJ/mol) and a low negative value of ΔH° (− 28.96 kJ/mol) show the feasibility and exothermic nature of the adsorption process. The synthesized dye was found to be an efficient adsorbent for the potential removal of cationic dye (methylene blue) from wastewater within a short time.


2021 ◽  
Vol 14 (01) ◽  
pp. 601-607
Author(s):  
N.A. Sri Aprilia ◽  
S. Mulyati ◽  
P.N. Alam ◽  
N. Razali ◽  
Zuhra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document