Establishment of a schizophrenic animal model through chronic administration of MK-801 in infancy and social isolation in childhood

2017 ◽  
Vol 46 ◽  
pp. 135-143 ◽  
Author(s):  
Weiqing Liu ◽  
Xiuyan Wang ◽  
Wenjuan Hong ◽  
Dong Wang ◽  
Xiaogang Chen
Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1026
Author(s):  
Kristina Holubova ◽  
Marketa Chvojkova ◽  
Barbora Hrcka Krausova ◽  
Vojtech Vyklicky ◽  
Eva Kudova ◽  
...  

Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.


2013 ◽  
Vol 26 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Alexandra I. Zugno ◽  
Maria Paula Matos ◽  
Leila Canever ◽  
Daiane B. Fraga ◽  
Renata D. De Luca ◽  
...  

ObjectiveCognitive deficits in schizophrenia play a crucial role in its clinical manifestation and seem to be related to changes in the cholinergic system, specifically the action of acetylcholinesterase (AChE). Considering this context, the aim of this study was to evaluate the chronic effects of ketamine in the activity of AChE, as well as in behavioural parameters involving learning and memory.MethodsThe ketamine was administered for 7 days. A duration of 24 h after the last injection, the animals were submitted to behavioural tests. The activity of AChE in prefrontal cortex, hippocampus and striatum was measured at different times after the last injection (1, 3, 6 and 24 h).ResultsThe results indicate that ketamine did not affect locomotor activity and stereotypical movements. However, a cognitive deficit was observed in these animals by examining their behaviour in inhibitory avoidance. In addition, an increase in AChE activity was observed in all structures analysed 1, 3 and 6 h after the last injection. Differently, serum activity of AChE was similar between groups.ConclusionChronic administration of ketamine in an animal model of schizophrenia generates increased AChE levels in different brain tissues of rats that lead to cognitive deficits. Therefore, further studies are needed to elucidate the complex mechanisms associated with schizophrenia.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S136-S136
Author(s):  
Camila Loureiro ◽  
Fachim Helene Aparecida ◽  
Corsi-Zuelli Fabiana ◽  
Shuhama Rosana ◽  
Joca Sâmia Regiane Lourenço ◽  
...  

Abstract Background Early-life stress is a key risk for psychiatric disorders that may produce changes in the neurodevelopment. N-methyl-d-aspartate receptor (NMDAR) have been associated with the pathophysiology of schizophrenia and evidence supports that epigenetic changes in NMDAR imply deficiencies in excitatory neurotransmission suggest its role in the neurobiology of psychoses (Uno and Coyle, 2019; Fachim et al., 2019; Gulchina et al., 2017). Aims: Although previous studies have shown abnormalities in the glutamatergic system in animal model of schizophrenia, it is not known if there are equivalent mRNA/protein alterations and DNA methylation changes in the brains of rats reared in isolation. Thus, in order to improve the knowledge of glutamatergic system role in psychosis, we investigated the NR1 and NR2 mRNA/protein and the DNA methylation levels of Grin1, Grin2a and Grin2b promoter region in the prefrontal cortex (PFC) and hippocampus (HIPPO) of male Wistar rats after isolation rearing. Furthermore, because the Parvalbumin (PV) deficit is the most consistent finding across animal models and schizophrenia itself, we also evaluated the expression of PV and other related GABAergic genes (REL and GAD1) in the brain of rats undergoing social isolation rearing as a validation of this animal model. We hypothesized that isolation rearing reduces mRNA and protein expressions of NMDAR subunits and cause DNA methylation changes. Methods Wistar rats were kept isolated or grouped (n=10/group) from weaning (21 days after birth) to 10 weeks and then exposed to the Open Field Test to assess locomotion. Afterwards the behavioural tests, the tissues were dissected for RNA/DNA extraction and NMDAR subunits were analysed using qRT-PCR, ELISA and pyrosequencing. Data were analysed by parametric tests. Results Isolated-reared animals presented: (i) decreased mRNA levels of Grin1 (p=0.011), Grin2a (p=0.039) and Grin2b (p=0.037) in the PFC followed by reduction in the GABAergic markers; (ii) increased NR1 protein levels in the HIPPO (p=0.001); (iii) hypermethylation of Grin1 at CpG5 in the PFC (p=0.047) and Grin2b CpG4 in the HIPPO when compared to grouped (p=0.024). Moreover, isolated and grouped animals presented a negative correlation between Grin1 mRNA and Grin1 methylation levels at CpG5 in the PFC (r: -0.577; p=0.010) and isolated rats presented a negative correlation between Grin2b methylation at CpG4 and NR2 protein levels in the HIPPO (r: -0.753; p=0.012). Discussion This study supports the hypothesis that the NMDAR methylation changes found in the brain tissues may underlie the NMDAR mRNA/protein expression alterations caused by the isolation period. These results highlighted the importance of the environmental influence during the development that may lead to cognitive impairments in adulthood. Moreover, we demonstrated that the social isolation rearing during 10 weeks causes long-lasting behavioral changes that may be more associated with late stages of schizophrenia. Our study contributes to the identification of the epigenetic mechanisms involved in the neuropathophysiology of schizophrenia, which can bring new pharmacotherapeutic strategies and to identify biomarkers that can improve the early interventions in schizophrenia patients. Finally, our data thus reinforce the validity of rats reared in social isolation after weaning in modelling aspects of schizophrenia, highlighting the glutamatergic and GABAergic features involved principally in the cognitive impairments related to prefrontal cortex.


2019 ◽  
Vol 147 ◽  
pp. 140-147
Author(s):  
Xiujuan Wang ◽  
Shuang Ding ◽  
Yanli Lu ◽  
Zhiqiang Jiao ◽  
Lin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document