Ultra efficient 4-Nitrophenol reduction, dye degradation and Cr(VI) adsorption in the presence of phytochemical synthesized Ag/ZnO nanocomposite: A view towards sustainable chemistry

Author(s):  
Muhammad Farooq ◽  
Shaukat Shujah ◽  
Kamran Tahir ◽  
Sadia Nazir ◽  
Afaq Ullah Khan ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39834-39842 ◽  
Author(s):  
Naveen Kumar Reddy Bogireddy ◽  
Vivechana Agarwal

Gold nanoparticles for highly sensitive detection of Hg(ii)/Fe(iii) and catalytic efficiency towards the reduction/degradation of 4-nitrophenol and organic dyes.


Author(s):  
Álvaro de Jesús Ruíz-Baltazar ◽  
Simón Yobanny Reyes-López ◽  
Daniel Larrañaga-Ordáz ◽  
Nestor Méndez-Lozano ◽  
Marco Antonio Zamora-Antuñano ◽  
...  

Currently, the use of sustainable chemistry as an ecological alternative for the generation of products or processes, free of polluting substance has assumed a preponderant role. The aim of this work is propose a bioinspired, facile, at low cost, non-toxic and environmentally friendly alternative to obtaining magnetic nanoparticles whit a majority phase of magnetite (Fe3O4). Is important to empathize that the synthesis was based on the chemical reduction through the Cnicus Benedictus extract, whose use as reducing agent has not been reported in the synthesis of iron oxides nanoparticles. In addition, the Cnicus Benedictus is abundant endemic plant in Mexico, with several medicinal properties and a large number of natural antioxidants. The obtained nanoparticles exhibited significant magnetic and antibacterial properties and an enhanced photocatalytic activity. The crystallite size of the Fe3O4 nanoparticles (Fe3O4 NP’s) was calculated by Williamson-Hall method. The photocatalytic properties of the Fe3O4 NP´s were studied by kinetics absorptions models in the Congo red (CR) degradation. Finally the antibacterial effect of the Fe3O4 NP´s were evaluated mediated the Kirby-Bauer method against E. coli and S. aureus bacteria. This route offers a green alternative to obtain Fe3O4 NP´s with remarkable magnetic, photocatalytic and antibacterial properties.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 946
Author(s):  
Álvaro de Jesús Ruíz-Baltazar ◽  
Nestor Méndez-Lozano ◽  
Daniel Larrañaga-Ordáz ◽  
Simón Yobanny Reyes-López ◽  
Marco Antonio Zamora Antuñano ◽  
...  

Currently, the use of sustainable chemistry as an ecological alternative for the generation of products or processes that are free of a polluting substance has assumed a preponderant role. The aim of this work is to propose a bioinspired, facile, low cost, non-toxic, and environmentally friendly alternative to obtaining magnetic nanoparticles with a majority phase of magnetite (Fe3O4). It is important to emphasize that the synthesis was based on the chemical reduction through the Cnicus benedictus extract, whose use as reducing agent has not been reported in the synthesis of iron oxides nanoparticles. In addition, the Cnicus benedictus is an abundant endemic plant in Mexico with several medicinal properties and a large number of natural antioxidants. The obtained nanoparticles exhibited significant magnetic and antibacterial properties and an enhanced photocatalytic activity. The crystallite size of the Fe3O4 nanoparticles (Fe3O4 NP’s) was calculated by the Williamson-Hall method. The photocatalytic properties of the Fe3O4 NP’s were studied by kinetics absorptions models in the Congo red (CR) degradation. Finally, the antibacterial effects of the Fe3O4 NPs were evaluated mediated the Kirby–Bauer method against Escherichia coli and Staphylococcus aureus bacteria. This route offers a green alternative to obtain Fe3O4 NPs with remarkable magnetic, photocatalytic, and antibacterial properties.


2010 ◽  
pp. 487-495
Author(s):  
Martin Bruhns ◽  
Peter Glaviè ◽  
Arne Sloth Jensen ◽  
Michael Narodoslawsky ◽  
Giorgio Pezzi ◽  
...  

The paper is based on the results of international project entitled “Towards Sustainable Sugar Industry in Europe (TOSSIE)”. 33 research topics of major importance to the sugar sector are listed and briefly described, and compared with research priorities of the European Technology Platforms: “Food for Life”, “Sustainable Chemistry”, “Biofuels”, and “Plant for the Future”. Most topics are compatible with the research themes included in the COOPERATION part of the 7th Framework Program of the EU (2007-2013). However, some topics may require long-term R&D with the time horizon of up to 15 years. The list of topics is divided into four parts: Sugar manufacturing, Applications of biotechnology and biorefinery processing, Sugarbeet breeding and growing, Horizontal issues. Apart from possible use of the list by policy- and decision makers with an interest in sugarbeet sector, the description of each research topic can be used as a starting point in setting up a research project or other R&D activities.


2019 ◽  
Vol 16 (7) ◽  
pp. 1024-1031
Author(s):  
Diparjun Das ◽  
Kalyani Rajkumari ◽  
Lalthazuala Rokhum

Aim and Objective: Sustainable production of fine chemicals both in industries and pharmaceuticals heavily depends on the application of solid-phase synthesis route coupled with microwave technologies due to their environmentally benign nature. In this report, a microwave-assisted esterification reaction using polymer-bound triphenylphosphine and 4,4′-dinitroazobenzene reagent system was investigated. Materials and Methods: The solvents were obtained from Merck India. Polymer-bound triphenylphosphine (~3 mmol triphenylphosphine moiety/g) was acquired from Sigma-Aldrich. The progress of the reaction was observed by thin-layer chromatography. All the reactions were performed in Milestones StartSYNTH microwave. The NMR spectra were recorded on Bruker Avance III 300, 400, and 500 MHz FT NMR Spectrometers. Using azo compound and polymer-bound triphenyl phosphine as a coupling reagent, esterification of different carboxylic acids with alcohols was performed under microwave irradiation. Results: Esterification of benzoic acid with 1-propanol under microwave irradiation gave a high yield of 92% propyl benzoate in 60 minutes only. Isolation of the ester products was relatively simple as both the byproducts polymer-bound triphenylphosphine oxide and hydrazine could be removed by simple filtration. The rates of reactions were found to be directly proportional to the pKa of the benzoic acids. Conclusion: 4,4′-Dinitroazobenzene was introduced as a novel coupling reagent, in conjugation with polymer-bound triphenylphosphine, for esterification reactions under microwave irradiation. The low moisture sensitivity of the reaction system, easy separation of the byproducts, and column chromatographyfree isolation of esters help our methods with application significance, particularly from the ‘Sustainable Chemistry’ perspective.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.


Sign in / Sign up

Export Citation Format

Share Document