A high performance edge detector based on fuzzy inference rules

2007 ◽  
Vol 177 (21) ◽  
pp. 4768-4784 ◽  
Author(s):  
Liming Hu ◽  
H.D. Cheng ◽  
Ming Zhang
2014 ◽  
Vol 9 (12) ◽  
pp. 1226-1234
Author(s):  
Kadir Temizel ◽  
Mehmet Odabas ◽  
Nurettin Senyer ◽  
Gokhan Kayhan ◽  
Sreekala Bajwa ◽  
...  

AbstractLack of water resources and high water salinity levels are among the most important growth-restricting factors for plants species of the world. This research investigates the effect of irrigation levels and salinity on reflectance of Saint John’s wort leaves (Hypericum perforatum L.) under stress conditions (water and salt stress) by multiple linear regression (MLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Empirical and heuristics modeling methods were employed in this study to relate stress conditions to leaf reflectance. It was found that the constructed ANN model exhibited a high performance than multiple regression and ANFIS in estimating leaf reflectance accurately.


2018 ◽  
Vol 155 ◽  
pp. 01037
Author(s):  
Sergey Gorbachev ◽  
Vladimir Syryamkin

The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative development. The article describes the optimized structuralfunctional scheme of the high-performance adaptive neuro-fuzzy classifier with a logical output, which has such specific features as a block of decision tree-based fuzzy rules and a hybrid algorithm for neural network adaptation of parameters based on the error back-propagation to the root of the decision tree.


Author(s):  
Mohammed Abdel-Nasser ◽  
Omar Salah

Robotics technology is used widely in minimally invasive surgery (MIS) which provides high performance and accuracy. The most famous robot arm mechanisms, which are used in MIS, are tendon-driven mechanism (TDM), and concentric tube mechanism (CTM). Unfortunately, these mechanisms until now have some limitations, i.e. making friction with the tissue during extracting and retracting and strain limits, for TDM and CTM respectively. A new hybrid concentric tube-tendon driven mechanism (HCTDM) is proposed to overcome these limitations. HCTDM enables the end-effector to get close to and get away from the surgical area during the operation without harming the tissue and with more flexibility. In addition to that, the workspace increases as a result of this combination, too. This benefit serves MIS, especially endoscopic surgeries (ESs). We did an analytical study of this idea and got the forward kinematics. In the inverse kinematics, an intelligent approach which is called an adaptive neuro-fuzzy inference system (ANFIS) is used because the closed-form solution is more complicated for such these mechanisms. Finally, HCTDM is analyzed and evaluated by using a computer simulation. The simulation results show that the workspace becomes wider and has more dexterity than use TDM or CTM individually. Furthermore, various trajectories are used to test the mechanism and the kinematic analysis, which show the mechanism can follow and track the trajectories with maximum mean error 1.279, 0.7027, and [Formula: see text] for X, Y, and Z axes respectively.


Fuzzy Logic ◽  
1993 ◽  
pp. 465-475 ◽  
Author(s):  
Hiroyoshi Nomura ◽  
Isao Hayashi ◽  
Noboru Wakami

2017 ◽  
Vol 7 (1.5) ◽  
pp. 170 ◽  
Author(s):  
Saravanan Chandrasekaran ◽  
Vijay Bhanu Srinivasan ◽  
Latha Parthiban

The Quality of Service (QoS) is enforced in discovering an optimal web service (WS).The QoS is uncertain due to the fluctuating performance of WS in the dynamic cloud environment. We propose a Fuzzy based Bayesian Network (FBN) system for Efficient QoS prediction. The novel method comprises three processes namely Semantic QoS Annotation, QoS Prediction, and Adaptive QoS using cloud infrastructure. The FBN employs the compliance factor to measure the performance of QoS attributes and fuzzy inference rules to infer the service capability. The inference rules are defined according to the user preference which assists to achieve the user satisfaction. The FBN returns the optimal WSs from a set of functionally equivalent WS. The unpredictable and extreme access of the selected WS is handled using cloud infrastructure. The results show that the FBN approach achieves nearly 95% of QoS prediction accuracy when providing an adequate number of past QoS data, and improves the prediction probability by 2.6% more than that of the existing approach.  


1992 ◽  
Vol 6 (2) ◽  
pp. 241-266 ◽  
Author(s):  
Isao Hayashi ◽  
Hiroyoshi Nomura ◽  
Hisayo Yamasaki ◽  
Noboru Wakami

1999 ◽  
Vol 11 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Kazuya KISHIDA ◽  
Shinya FUKUMOTO ◽  
Hiromi MIYAJIMA

Sign in / Sign up

Export Citation Format

Share Document