User behavior prediction via heterogeneous information in social networks

Author(s):  
Xiangbo Tian ◽  
Liqing Qiu ◽  
Jianyi Zhang
2019 ◽  
Vol 92 ◽  
pp. 52-58 ◽  
Author(s):  
Weiwei Yuan ◽  
Kangya He ◽  
Guangjie Han ◽  
Donghai Guan ◽  
Asad Masood Khattak

2019 ◽  
Vol 93 ◽  
pp. 1023-1035 ◽  
Author(s):  
Xiong Luo ◽  
Changwei Jiang ◽  
Weiping Wang ◽  
Yang Xu ◽  
Jenq-Haur Wang ◽  
...  

2021 ◽  
Author(s):  
Xiangyu Zhang ◽  
Jun Fang ◽  
Jingfan Zou ◽  
Wenfang Li ◽  
Weigang Xu ◽  
...  

2021 ◽  
Author(s):  
Syeda Nadia Firdaus

Social network is a hot topic of interest for researchers in the field of computer science in recent years. These social networks such as Facebook, Twitter, Instagram play an important role in information diffusion. Social network data are created by its users. Users’ online activities and behavior have been studied in various past research efforts in order to get a better understanding on how information is diffused on social networks. In this study, we focus on Twitter and we explore the impact of user behavior on their retweet activity. To represent a user’s behavior for predicting their retweet decision, we introduce 10-dimentional emotion and 35-dimensional personality related features. We consider the difference of a user being an author and a retweeter in terms of their behaviors, and propose a machine learning based retweet prediction model considering this difference. We also propose two approaches for matrix factorization retweet prediction model which learns the latent relation between users and tweets to predict the user’s retweet decision. In the experiment, we have tested our proposed models. We find that models based on user behavior related features provide good improvement (3% - 6% in terms of F1- score) over baseline models. By only considering user’s behavior as a retweeter, the data processing time is reduced while the prediction accuracy is comparable to the case when both retweeting and posting behaviors are considered. In the proposed matrix factorization models, we include tweet features into the basic factorization model through newly defined regularization terms and improve the performance by 3% - 4% in terms of F1-score. Finally, we compare the performance of machine learning and matrix factorization models for retweet prediction and find that none of the models is superior to the other in all occasions. Therefore, different models should be used depending on how prediction results will be used. Machine learning model is preferable when a model’s performance quality is important such as for tweet re-ranking and tweet recommendation. Matrix factorization is a preferred option when model’s positive retweet prediction capability is more important such as for marketing campaign and finding potential retweeters.


2021 ◽  
Author(s):  
Syeda Nadia Firdaus

Social network is a hot topic of interest for researchers in the field of computer science in recent years. These social networks such as Facebook, Twitter, Instagram play an important role in information diffusion. Social network data are created by its users. Users’ online activities and behavior have been studied in various past research efforts in order to get a better understanding on how information is diffused on social networks. In this study, we focus on Twitter and we explore the impact of user behavior on their retweet activity. To represent a user’s behavior for predicting their retweet decision, we introduce 10-dimentional emotion and 35-dimensional personality related features. We consider the difference of a user being an author and a retweeter in terms of their behaviors, and propose a machine learning based retweet prediction model considering this difference. We also propose two approaches for matrix factorization retweet prediction model which learns the latent relation between users and tweets to predict the user’s retweet decision. In the experiment, we have tested our proposed models. We find that models based on user behavior related features provide good improvement (3% - 6% in terms of F1- score) over baseline models. By only considering user’s behavior as a retweeter, the data processing time is reduced while the prediction accuracy is comparable to the case when both retweeting and posting behaviors are considered. In the proposed matrix factorization models, we include tweet features into the basic factorization model through newly defined regularization terms and improve the performance by 3% - 4% in terms of F1-score. Finally, we compare the performance of machine learning and matrix factorization models for retweet prediction and find that none of the models is superior to the other in all occasions. Therefore, different models should be used depending on how prediction results will be used. Machine learning model is preferable when a model’s performance quality is important such as for tweet re-ranking and tweet recommendation. Matrix factorization is a preferred option when model’s positive retweet prediction capability is more important such as for marketing campaign and finding potential retweeters.


Author(s):  
Yingying Shang

Using server log data to predict the URLs that a user is likely to visit is an important research area in user behavior prediction. In this paper, a predictive model (called LAR) based on the long short-term memory (LSTM) attention network and reciprocal-nearest-neighbors supported clustering algorithm (RSC) for predicting the URL is proposed. First, the LSTM-attention network is used to predict the URL categories a user might visit, and the RSC algorithm is then used to cluster users. Subsequently, the URLs belonging to the same category are determined from the user clusters to predict the URLs that the user might visit. The proposed LAR model considers the time sequence of the user access URL, and the relationship between a single user and group users, which effectively improves the prediction accuracy. The experimental results demonstrate that the LAR model is feasible and effective for user behavior prediction. The accuracy of the mean absolute error and root mean square error of the LAR model are better than those of the other models compared in this study.


Sign in / Sign up

Export Citation Format

Share Document