In situ neutron diffraction study of fatigue behavior of CrFeCoNiMo0.2 high entropy alloy

2021 ◽  
Vol 139 ◽  
pp. 107371
Author(s):  
Haiyan He ◽  
Bing Wang ◽  
Dong Ma ◽  
Alexandru D. Stoica ◽  
Zhenduo Wu ◽  
...  
ChemInform ◽  
2010 ◽  
Vol 24 (1) ◽  
pp. no-no
Author(s):  
M. LATROCHE ◽  
A. PERCHERON-GUEGAN ◽  
Y. CHABRE ◽  
C. POINSIGNON ◽  
J. PANNETIER

2019 ◽  
Vol 792 ◽  
pp. 240-249 ◽  
Author(s):  
Eli Vandersluis ◽  
Comondore Ravindran ◽  
Dimitry Sediako ◽  
Abdallah Elsayed ◽  
Glenn Byczynski

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Frank ◽  
S. S. Nene ◽  
Y. Chen ◽  
B. Gwalani ◽  
E. J. Kautz ◽  
...  

AbstractTransformation induced plasticity (TRIP) leads to enhancements in ductility in low stacking fault energy (SFE) alloys, however to achieve an unconventional increase in strength simultaneously, there must be barriers to dislocation motion. While stacking faults (SFs) contribute to strengthening by impeding dislocation motion, the contribution of SF strengthening to work hardening during deformation is not well understood; as compared to dislocation slip, twinning induced plasticity (TWIP) and TRIP. Thus, we used in-situ neutron diffraction to correlate SF strengthening to work hardening behavior in a low SFE Fe40Mn20Cr15Co20Si5 (at%) high entropy alloy, SFE ~ 6.31 mJ m−2. Cooperative activation of multiple mechanisms was indicated by increases in SF strengthening and γ-f.c.c. → ε-h.c.p. transformation leading to a simultaneous increase in strength and ductility. The present study demonstrates the application of in-situ, neutron or X-ray, diffraction techniques to correlating SF strengthening to work hardening.


2020 ◽  
Vol 32 (20) ◽  
pp. 8993-9000
Author(s):  
Laura Paradis-Fortin ◽  
Pierric Lemoine ◽  
Carmelo Prestipino ◽  
Ventrapati Pavan Kumar ◽  
Bernard Raveau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document