Growth dynamics of citations of cumulative papers of individual authors according to progressive nucleation mechanism: Concept of citation acceleration

2013 ◽  
Vol 49 (4) ◽  
pp. 757-772 ◽  
Author(s):  
Keshra Sangwal
2021 ◽  
Vol 14 (10) ◽  
pp. 5563-5571
Author(s):  
Yihu Li ◽  
Pengfei Wu ◽  
Wei Zhong ◽  
Chunlin Xie ◽  
Yanling Xie ◽  
...  

The preferential adsorption of cation additives enables the transformation of a zinc nucleation mechanism from instantaneous nucleation to progressive nucleation, which ultimately realizes a stable zinc stripping/plating behavior.


2013 ◽  
Vol 785-786 ◽  
pp. 938-943 ◽  
Author(s):  
Li Bin Yu ◽  
Qi Jun Zhong ◽  
Yi Xiao ◽  
Jian Feng Gu ◽  
Qing Dong Zhong

Nucleation kinetics of Ni-nanoCr2O3composite coating during early electro-crystallization was investigated. The results showed that, the early electro-crystallization processes of Ni-nanoCr2O3composite coating and pure Ni coating followed a Scharifker-Hill nucleation/growth mechanism. At the low potential, the nucleation process of pure Ni and Ni-Cr2O3composite system may approach to the progressive nucleation model; With the overpotential increasing, the nucleation model of Pure Ni and Ni-Cr2O3composite system converts into the instantaneous nucleation mechanism controlled; at the same overpotential, Cr2O3powder promotes the electro-crystallization nucleation of Ni. But at high negative potential, Cr2O3powder in composite system promotes the electro-crystal nucleation of Ni weakly; the nanoCr2O3powder added reduces the current efficiency in the nucleation process of Ni.


Author(s):  
Pham V. Huong ◽  
Stéphanie Bouchet ◽  
Jean-Claude Launay

Microstructure of epitaxial layers of doped GaAs and its crystal growth dynamics on single crystal GaAs substrate were studied by Raman microspectroscopy with a Dilor OMARS instrument equipped with a 1024 photodiode multichannel detector and a ion-argon laser Spectra-Physics emitting at 514.5 nm.The spatial resolution of this technique, less than 1 μm2, allows the recording of Raman spectra at several spots in function of thickness, from the substrate to the outer deposit, including areas around the interface (Fig.l).The high anisotropy of the LO and TO Raman bands is indicative of the orientation of the epitaxial layer as well as of the structural modification in the deposit and in the substrate at the interface.With Sn doped, the epitaxial layer also presents plasmon in Raman scattering. This fact is already very well known, but we additionally observed that its frequency increases with the thickness of the deposit. For a sample with electron density 1020 cm-3, the plasmon L+ appears at 930 and 790 cm-1 near the outer surface.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


2020 ◽  
Vol 634 ◽  
pp. 231-236 ◽  
Author(s):  
EA McHuron ◽  
T Williams ◽  
DP Costa ◽  
C Reichmuth

Sign in / Sign up

Export Citation Format

Share Document