Robust disturbance rejection control of a biped robotic system using high-order extended state observer

2016 ◽  
Vol 62 ◽  
pp. 276-286 ◽  
Author(s):  
Nadhynee Martínez-Fonseca ◽  
Luis Ángel Castañeda ◽  
Agustín Uranga ◽  
Alberto Luviano-Juárez ◽  
Isaac Chairez
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


Author(s):  
Song Chen ◽  
Fengjun Yan

Dual-loop exhaust gas recirculation with a variable-geometry turbocharger is an effective architecture for achieving desired intake manifold conditions, such as the temperature, the pressure and the oxygen concentration of the intake manifold, which have critical roles in advanced combustion mode control. However, the widely used control-oriented model is derived on the basis that the heat transfer between the pipes and the gas is negligible, which means that it suffers from non-trivial errors. Simulation results show that other error sources, including the volumetric efficiency and the orifice equation, are difficult to calibrate accurately and also cause significant errors in the system, particularly in transient situations. Modified active disturbance rejection control with an extended state observer is utilized to deal with the non-linear, multiple-input multiple-output system in this paper. It is demonstrated that the performance of active disturbance rejection control mainly depends on the performance of the extended state observer. In this paper, an extended state observer, which is based on the sliding-mode concept rather than the conventional linear observer, is introduced. By taking advantage of its strong robustness, the system is decoupled into three loops. For each loop, the internal errors and the external errors, including the modelling error and the coupling effects, are lumped into one term; they are then actively estimated and cancelled out by the control input in real time. The proposed method was validated using calibrated GT-Power model simulations.


Sign in / Sign up

Export Citation Format

Share Document