scholarly journals High-Order Sliding Mode-Based Fixed-Time Active Disturbance Rejection Control for Quadrotor Attitude System

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2995
Author(s):  
Fan Wang ◽  
Peng Liu ◽  
Feng Jing ◽  
Bo Liu ◽  
Wei Peng ◽  
...  

This paper proposes a novel robust control scheme for tip trajectory tracking of a lightweight flexible single-link arm. The developed control scheme deals with the influence of tip payload changes and disturbances during the working process of the flexible arm, thus realizing the accurate tracking for the tip reference trajectory. The robust control scheme is composed of an inner loop and an outer loop. The inner loop adopts the traditional PD control, and an active disturbance rejection control (ADRC) with a sliding mode (SM) compensation is designed in the outer loop. Moreover, the sliding mode compensation is mainly used to cope with the disturbance estimation error from the extended state observer (ESO), by which the insensitivity to tip payload variations and strong disturbance resistance is achieved. Finally, some numerical simulations are performed to support the theoretical analysis. The results show that the system is more robust to the tip mass variations of the arm and more resistant to the external torque after adding the sliding mode robustness term to the ADRC.


Sign in / Sign up

Export Citation Format

Share Document