Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies

2022 ◽  
Vol 183 ◽  
pp. 19-33
Author(s):  
Guangqin Song ◽  
Shengbiao Wu ◽  
Calvin K.F. Lee ◽  
Shawn P. Serbin ◽  
Brett T. Wolfe ◽  
...  
2021 ◽  
Vol 3 (3) ◽  
pp. 234-248
Author(s):  
N. Bhalaji

In recent days, we face workload and time series issue in cloud computing. This leads to wastage of network, computing and resources. To overcome this issue we have used integrated deep learning approach in our proposed work. Accurate prediction of workload and resource allocation with time series enhances the performance of the network. Initially the standard deviation is reduced by applying logarithmic operation and then powerful filters are adopted to remove the extreme points and noise interference. Further the time series is predicted by integrated deep learning method. This method accurately predicts the workload and sequence of resource along with time series. Then the obtained data is standardized by a Min-Max scalar and the quality of the network is preserved by incorporating network model. Finally our proposed method is compared with other currently used methods and the results are obtained.


2021 ◽  
Vol 13 (14) ◽  
pp. 2790
Author(s):  
Hongwei Zhao ◽  
Sibo Duan ◽  
Jia Liu ◽  
Liang Sun ◽  
Louis Reymondin

Accurate crop type maps play an important role in food security due to their widespread applicability. Optical time series data (TSD) have proven to be significant for crop type mapping. However, filling in missing information due to clouds in optical imagery is always needed, which will increase the workload and the risk of error transmission, especially for imagery with high spatial resolution. The development of optical imagery with high temporal and spatial resolution and the emergence of deep learning algorithms provide solutions to this problem. Although the one-dimensional convolutional neural network (1D CNN), long short-term memory (LSTM), and gate recurrent unit (GRU) models have been used to classify crop types in previous studies, their ability to identify crop types using optical TSD with missing information needs to be further explored due to their different mechanisms for handling invalid values in TSD. In this research, we designed two groups of experiments to explore the performances and characteristics of the 1D CNN, LSTM, GRU, LSTM-CNN, and GRU-CNN models for crop type mapping using unfilled Sentinel-2 (Sentinel-2) TSD and to discover the differences between unfilled and filled Sentinel-2 TSD based on the same algorithm. A case study was conducted in Hengshui City, China, of which 70.3% is farmland. The results showed that the 1D CNN, LSTM-CNN, and GRU-CNN models achieved acceptable classification accuracies (above 85%) using unfilled TSD, even though the total missing rate of the sample values was 43.5%; these accuracies were higher and more stable than those obtained using filled TSD. Furthermore, the models recalled more samples on crop types with small parcels when using unfilled TSD. Although LSTM and GRU models did not attain accuracies as high as the other three models using unfilled TSD, their results were almost close to those with filled TSD. This research showed that crop types could be identified by deep learning features in Sentinel-2 dense time series images with missing information due to clouds or cloud shadows randomly, which avoided spending a lot of time on missing information reconstruction.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


Sign in / Sign up

Export Citation Format

Share Document