Seismic Analysis and Performance of High Strength Composite Special Moment Frames (C-SMFs)

Structures ◽  
2017 ◽  
Vol 9 ◽  
pp. 165-178 ◽  
Author(s):  
Zhichao Lai ◽  
Zhihui Huang ◽  
Amit H. Varma

Steel structures provide better resistance against lateral and various other combinations of loads. Steel structures have various advantages over RCC structures as they have high strength to weight ratio, uniformity, elasticity flexibility and take minimum time for erection (as large prefabricated structures are available). Steel is recyclable too. Bracing systems are well known to increase the stiffness of any type of structure. Using bracing system in steel structures increases the stiffness of the structures to a large extent. In present paper, the evaluation of different kinds of curved bracing system was carried out for steel framed structure while performing dynamic seismic analysis as per IS:1893:2016. The behavior and performance of various shaped of curved bracing was analyzed in software staad.pro and results were collected and represented in the form of tables, graphs and figures. For this purpose, 14 storey regular building was chosen and different geometric and design parameters were taken as per the codal provisions. The height of each floor was considered as 3.6m. Whereas, the plan of the building entails 6 x 6 bays in both the direction and the size of each panel was taken as 5 x 5m. After scrutinizing the results gathered, it can be concluded that ‘AV Arc’ bracing system is the most effective bracing system and it can be used effectively to resist lateral loads such as earthquake loads


2021 ◽  
Vol 115 ◽  
pp. 104022
Author(s):  
Benbo Sun ◽  
Mingjiang Deng ◽  
Sherong Zhang ◽  
Chao Wang ◽  
Yang Li ◽  
...  

Author(s):  
Muhsin Aljuboury ◽  
Md Jahir Rizvi ◽  
Stephen Grove ◽  
Richard Cullen

The goal of this experimental study is to manufacture a bolted GFRP flange connection for composite pipes with high strength and performance. A mould was designed and manufactured, which ensures the quality of the composite materials and controls its surface grade. Based on the ASME Boiler and Pressure Vessel Code, Section X, this GFRP flange was fabricated using biaxial glass fibre braid and polyester resin in a vacuum infusion process. In addition, many experiments were carried out using another mould made of glass to solve process-related issues. Moreover, an investigation was conducted to compare the drilling of the GFRP flange using two types of tools; an Erbauer diamond tile drill bit and a Brad & Spur K10 drill. Six GFRP flanges were manufactured to reach the final product with acceptable quality and performance. The flange was adhesively bonded to a composite pipe after chamfering the end of the pipe. Another type of commercially-available composite flange was used to close the other end of the pipe. Finally, blind flanges were used to close both ends, making the pressure vessel that will be tested under the range of the bolt load and internal pressure.


2009 ◽  
Vol 417-418 ◽  
pp. 845-848 ◽  
Author(s):  
Chang Wang Yan ◽  
Jin Qing Jia ◽  
Ju Zhang

In order to investigate the seismic damage and performance of steel reinforced ultra high strength concrete composite joint subjected to reversal cycle load, six interior strong-column-weak-beam joint specimens were tested with various axial load ratio and volumetric stirrup ratio. A discussion on the crack mode and ductility was presented. It was found that all joint specimens failed in bending with a beam plastic hinge in a ductile manner, with crack propagation different from the weak-column-strong-beam joint. The experimental results indicated that test parameters of the steel reinforced ultra high strength concrete composite joint with good seismic performance may be referred for engineering application.


Sign in / Sign up

Export Citation Format

Share Document