Energy-based criteria for assessment of box-section steel columns against progressive collapse

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2580-2591
Author(s):  
Mohammad Javad Shabani ◽  
Abdolreza Sarvghad Moghadam ◽  
Armin Aziminejad ◽  
Mehran Seyed Razzaghi
2021 ◽  
Vol 276 ◽  
pp. 02029
Author(s):  
Jianpeng Sun ◽  
Wei Feng ◽  
RuiPeng Guo ◽  
Chunfeng Liu

In this paper, the finite element simulation software ABAQUS was used to study the hysteretic performance of Q690 high-strength steel (HSS) and high-web box-section steel columns. The finite element model was established by solid elements, and the influence of the initial defects of materials on the specimen was considered. The hyteretic performance of the specimen was conducted by analyzing and comparing the width-thickness ration of the flanges and the width-thickness ration of the webs. The results show that the increase of width-thickness ratios of the webs and flanges will reduce the hysteresis performance, the energy dissipation capacity and the ultimate horizontal bearing capacity of the specimen.


2022 ◽  
Vol 189 ◽  
pp. 107090
Author(s):  
Lei Gao ◽  
Yu-Zhou Zheng ◽  
Lin-Yue Bai ◽  
Xiao-Hui He ◽  
Ming Ni

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 606
Author(s):  
Mohammad Momeni ◽  
Chiara Bedon ◽  
Mohammad Ali Hadianfard ◽  
Abdolhossein Baghlani

Damage to building load-bearing members (especially columns) under explosions and impact are critical issues for structures, given that they may cause a progressive collapse and remarkably increase the number of potential victims. One of the best ways to deal with this issue is to provide values of safe protective distance (SPD) for the structural members to verify, so that the amount of damage (probability of exceedance low damage) cannot exceed a specified target. Such an approach takes the form of the so-called safe scaled distance (SSD), which can be calculated for general structural members but requires dedicated and expensive studies. This paper presents an improved calculation method, based on structural reliability analysis, to evaluate the minimum SSD for steel columns under dynamic blast loads. An explicit finite element (FE) approach is used with the Monte Carlo simulation (MCS) method to obtain the SSD, as a result of damage probability. The uncertainties associated with blast and material properties are considered using statistical distributions. A parametric study is thus carried out to obtain curves of probability of low damage for a range of H-shaped steel columns with different size and boundaries. Finally, SSD values are detected and used as an extensive databank to propose a practical empirical formulation for evaluating the SSD of blast loaded steel columns with good level of accuracy and high calculation efficiency.


At present, the current legislative and regulatory documents do not contain a clear and unambiguous answer to the question, what buildings and structures should be designed resistant to progressive collapse. In this regard, the analysis of the legal and regulatory requirements of the need for calculations to prevent the progressive collapse of buildings and structures due to hypothetical or suspected local destruction is presented. The main legislative requirements of technical regulation in the field of ensuring the mechanical safety of buildings and structures, as well as the requirements of regulatory documents regarding the design of the protection of building and structures against progressive collapse are considered. The analysis of the fundamental principles features of the calculation for the structural protection against progressive collapse is given. Some issues discussed by the professional community in the direction of possible ways of solving the actual problems of the presented problem are considered. The conclusion is made about the need for further dialogue of the professional community on the development of a common position on the protection of buildings and structures from progressive collapse, which should be reflected in the legislative and regulatory requirements.


Sign in / Sign up

Export Citation Format

Share Document