scholarly journals Effects of land management practices and land cover types on soil loss and crop productivity in Ethiopia: A review

Author(s):  
Gizaw Desta Gessesse ◽  
Lulseged Tamene ◽  
Wuletawu Abera ◽  
Tilahun Amede ◽  
Anthony Whitbread
2021 ◽  
Vol 322 ◽  
pp. 107635
Author(s):  
Gizaw Desta ◽  
Wuletawu Abera ◽  
Lulseged Tamene ◽  
Tilahun Amede

2019 ◽  
Vol 648 ◽  
pp. 1462-1475 ◽  
Author(s):  
Kindiye Ebabu ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Derege Tsegaye Meshesha ◽  
...  

2019 ◽  
Author(s):  
Abreham Berta Aneseyee

Abstract Background: Information on soil loss and sediment export is essential to identify hotspots of soil erosion for conservation interventions in a given watershed. This study aims at investigating the dynamic of soil loss and sediment export associated with land use/land cover change and identifies soil loss hotspot areas in Winike watershed of Omo-gibe basin of Ethiopia. Spatial data collected from satellite images, topographic maps, meteorological and soil data were analyzed. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) of sediment delivery ratio (SDR) model was used based on analysis of land use/land cover maps and RUSLE factors. Result: The results showed that total soil loss increased from 774.86 thousand tons in 1988 to 951.21 thousand tons in 2018 while the corresponding sediment export increased by 3.85 thousand tons in the same period. These were subsequently investigated in each land-use type. Cultivated fields generated the highest soil erosion rate, which increased by 10.02 t/ha/year in 1988 to 43.48 t/ha/year in 2018. This corresponds with the expansion of the cultivated area that increased from 44.95 thousand ha in 1988 to 59.79 thousand ha in 2018. This is logical as the correlation between soil loss and sediment delivery and expansion of cultivated area is highly significant (p<0.01). Sub-watershed six (SW-6) generated the highest soil loss (62.77 t/ha/year) and sediment export 16.69 t/ha/year, followed by Sub-watershed ten (SW-10) that are situated in the upland plateau. Conversely, the lower reaches of the watershed are under dense vegetation cover and experiencing less erosion. Conclusion: Overall, the changes in land use/land cover affect significantly the soil erosion and sediment export dynamism. This research is used to identify an area to prioritize the watershed for immediate management practices. Thus, land use policy measures need to be enforced to protect the hydropower generation dams at downstream and the ecosystem at the watershed.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kadambari Deshpande ◽  
Nachiket Kelkar ◽  
Jagdish Krishnaswamy ◽  
Mahesh Sankaran

Effects of land-cover change on insectivorous bat activity can be negative, neutral or positive, depending on foraging strategies of bats. In tropical agroforestry systems with high bat diversity, these effects can be complex to assess. We investigated foraging habitat use by three insectivorous bat guilds in forests and rubber plantations in the southern Western Ghats of India. Specifically, we monitored acoustic activity of bats in relation to (1) land-cover types and vegetation structure, and (2) plantation management practices. We hypothesized that activity of open-space aerial (OSA) and edge-space aerial (ESA) bat guilds would not differ; but narrow-space, flutter-detecting (NSFD) bat guild activity would be higher, in structurally heterogeneous forest habitats than monoculture rubber plantations. We found that bat activity of all guilds was highest in areas with high forest cover and lowest in rubber plantations. Higher bat activity was associated with understorey vegetation in forests and plantations, which was expected for NSFD bats, but was a surprise finding for OSA and ESA bats. Within land-cover types, open areas and edge-habitats had higher OSA and ESA activity respectively, while NSFD bats completely avoided open habitats. In terms of management practices, intensively managed rubber plantations with regular removal of understorey vegetation had the lowest bat activity for all guilds. Intensive management can undermine potential ecosystem services of insectivorous bats (e.g., insect pest-control in rubber plantations and surrounding agro-ecosystems), and magnify threats to bats from human disturbances. Low-intensity management and maintenance of forest buffers around plantations can enable persistence of insectivorous bats in tropical forest-plantation landscapes.


2021 ◽  
Vol 18 (1) ◽  
pp. 17-29
Author(s):  
Irfan Malik Setiabudi ◽  
Wahyu Kusumaningrum

Forest and land fires occur almost every year in Indonesia. They dominantly befall in Sumatra and Kalimantan. Most of the fire incidents in Indonesia are caused by anthropogenic factors. Moreover, practices of land management are indicated to have a strong relationship to the fires. Village-based fire control becomes one of approaches applied by the government. This study is conducted to reveal relational characteristics between village-based land management practices and fire events, principally in peatland areas, with a focused area in Kalimantan. Practices of land management will be analised by the characteristics of existing official land use, while fire events will be identified by the existence and intensity of hotspots. The method applied in this research is spatio-temporal analysis based on fire density analysis. Fire incidents occur from July to November, with the peak point occurrence is in September. Area in unmanaged land has increased the potency of fire events than in forest type and in other managed land cover types. Fires located in peatland also generate potential of fires significantly than in mineral land. Further, land cover and land type aspects together with village fire density can be employed as the priority in implementing policy on village-based fire control.


1984 ◽  
Vol 13 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Willem van Vuuren ◽  
Peter Ysselstein

Leasing of agricultural land is gaining in importance in North America. The impact of leasing on soil management practices is examined in an area in the Canadan province of Ontario. Prevailing land contracts are insecure and the rental land market appears to be imperfect in the area. Under these conditions leasing leads to undesirable soil management practices and consequently to a lower state of conservation and to lower crop productivity over time. A difference in soil management and crop productivity has been observed between owner-operated and rented land.


Land ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 125 ◽  
Author(s):  
Joachim Eisenberg ◽  
Fabrice A. Muvundja

Inappropriate land management leads to soil loss with destruction of the land’s resource and sediment input into the receiving river. Part of the sediment budget of a catchment is the estimation of soil loss. In the Ruzizi catchment in the Eastern Democratic Republic of the Congo (DRC), only limited research has been conducted on soil loss mainly dealing with local observations on geomorphological forms or river load measurements; a regional quantification of soil loss is missing so far. Such quantifications can be calculated using the Universal Soil Loss Equation (USLE). It is composed of four factors: precipitation (R), soil (K), topography (LS), and vegetation cover (C). The factors can be calculated in different ways according to the characteristics of the study area. In this paper, different approaches for calculating the single factors are reviewed and validated with field work in two sub-catchments of Ruzizi River supplying the water for the reservoirs of Ruzizi I and II hydroelectric dams. It became obvious that the (R)USLE model provides the best results with revised R and LS factors. C factor calculations required to conduct a supervised classification using the Maximum Likelihood Procedure. Different C factor values were assigned to the land cover classes. The calculations resulted in a soil loss rate for the predominantly occurring Ferralsols and Leptosols of around 576 kt/yr in both catchments, when 2016 landcover and precipitation are used. This represents an area-normalized value of 40.4 t/ha/yr for Ruzizi I and 50.5 t/ha/yr for Ruzizi II due to different landcover in the two sub-catchments. The mean value for the whole study area is 47.8 t/ha/yr or even 27.1 t/ha/yr when considering land management techniques like terracing on the slopes (P factor). This work has shown that the (R)USLE model can serve as an easy to handle tool for soil loss quantification when comprehensive field work results are sparse. The model can be implemented in Geographic Information Systems (GIS) with free data; hence, a validation is crucial. It becomes apparent that the use of high resolution Sentinel 2a MSI data as the basis for C factor calculations is an appropriate method for considering heterogeneous Land Use Land Cover (LULC) patterns. To transfer the approach to other regions, the calculation of factor R needs to be modified.


2010 ◽  
Vol 4 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Nasir Gebi Tukura ◽  
Mahmud Mustefa Akalu

Soil erosion is a major environmental and economic concern affecting all continents around the world. Soil loss facilitates land degradation, threatening both agricultural and natural environments. This problem is severe in Ethiopia due to its topographic features. To evaluate the effect of land use and land cover changes on soil erosion, we studied land use changes of the Hanger River watershed, NW Ethiopia, from 2005 to 2017, using remote sensing and estimating soil erosion using the Revised Universal Soil Loss Equation. The results of land-cover changes have revealed a decrease in open forest areas, grazing land, shrub land and grass land by 33.16%, 9.20 %, 3.22 %, and 7.62 %, respectively in a fourteen years period. In the same period, there was an increase in agricultural areas by 48.73 % and dense forest by 4.74 %. The estimated mean soil erosion potential in Hanger River watershed, between 2005 and 2017, was about 55.5 and 70.5 t ha-1 year-1, respectively. For the High and Very high classes, the values increased from 33.40% to 35.74% and 6.36% to 12.81%, respectively from 2005 to 2017.Therefore, it can be concluded that there is an increasing tendency for soil erosion in the area due to changes in land cover, particularly deforestation due to agricultural land expansion. This trend should receive attention aiming to keep the stability and sustainability of this ecosystem in the future. Management interventions are necessary to improve the status and utilization of watershed resources by applying sustainable land management practices for sustainable livelihood of the local people. AVALIAÇÃO DE RISCOS DE EROSÃO DO SOLO DEVIDO A ALTERAÇÕES DO USO DO SOLO/ COBERTURA DO SOLO (LULC), NA BACIA DO RIO HANGAR, NOROESTE DA ETIÓPIAResumoA erosão do solo suscita uma grande preocupação ambiental e econômica e afeta todos os continentes. A perda de solo facilita a degradação da terra, ameaçando ambientes agrícolas e naturais. Este problema é grave na Etiópia devido às suas características topográficas. Para avaliar o efeito das mudanças no uso e cobertura da terra na erosão do solo, estudamos as mudanças no uso da bacia hidrográfica do Rio Hanger, no noroeste da Etiópia, de 2005 a 2017, usando sensoriamento remoto e estimando a erosão do solo com a Equação Universal de Perda de Solo Revisada. Os resultados das mudanças na cobertura da terra revelaram uma diminuição nas áreas de florestas abertas, pastagens, arbustos e pastagens em 33,16%, 9,20%, 3,22% e 7,62%, respectivamente, em um período de catorze anos. No mesmo período, houve um aumento nas áreas agrícolas em 48,73% e na floresta densa em 4,74%. O potencial médio estimado de erosão do solo na bacia hidrográfica do Rio Hanger, entre 2005 e 2017, foi de cerca de 55,5 e 70,5 t ha-1 ano-1, respectivamente. Para as classes Alta e Muito Alta, os valores aumentaram de 33,40% para 35,74% e 6,36% para 12,81%, respectivamente, de 2005 a 2017.Portanto, pode-se concluir que há uma tendência crescente de erosão do solo na área de estudo devido a mudanças na cobertura da terra, particularmente desmatamento, na sequência da expansão da terra agrícola. A referida tendência deve ser acompanhada, com o objetivo de se tomarem medidas adequadas que permitam manter a estabilidade e a sustentabilidade do ecossistema no futuro. É, pois, necessário adotar medidas de gestão adequadas a fim de se poder melhorar o status e a utilização dos recursos da bacia hidrográfica do Rio Hanger, aplicando práticas sustentáveis de manejo da terra para a subsistência sustentável da população local. Palavras-chave: SIG. Bacia Hidrográfica. Mudanças no uso e cobertura da terra. RUSLE. Erosão do solo.


Sign in / Sign up

Export Citation Format

Share Document