Impact of Tenancy on Land Management

1984 ◽  
Vol 13 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Willem van Vuuren ◽  
Peter Ysselstein

Leasing of agricultural land is gaining in importance in North America. The impact of leasing on soil management practices is examined in an area in the Canadan province of Ontario. Prevailing land contracts are insecure and the rental land market appears to be imperfect in the area. Under these conditions leasing leads to undesirable soil management practices and consequently to a lower state of conservation and to lower crop productivity over time. A difference in soil management and crop productivity has been observed between owner-operated and rented land.

2018 ◽  
Vol 8 (2) ◽  
pp. 20
Author(s):  
Tesfaye Samuel Saguye

Land degradation is increasing in severity and extent in many parts of the world. Success in arresting land degradation entails an improved understanding of its causes, process, indicators and impacts. Various scientific methodologies have been employed to assess land degradation globally. However, the use of local community knowledge in elucidating the causes, process, indicators and effects of land degradation has seen little application by scientists and policy makers. Land degradation may be a physical process, but its underlying causes are firmly rooted in the socio-economic, political and cultural environment in which land users operate. Analyzing the root causes and effects of land degradation from local community knowledge, perception and adapting strategies perspective will provide information that is essential for designing and promoting sustainable land management practices. The main objective of this study was to analyze the perceptions of farmers’ on the impact of land degradation hazard on agricultural land productivity decline associated with soil erosion and fertility loss. The study used a multistage sampling procedure to select sample respondent households. The sample size of the study was 120 household heads and 226 farm plots managed by these farmers. The primary data of the study were collected by using semi-structured Interview, focus group discussions and field observation. Both descriptive statistics and econometric techniques were used for data analysis. Descriptive results show that 57percent of the respondents were perceived the severity and its consequence on agricultural land productivity. The following indicators of soil erosion and fertility loss were generally perceived and observed by farmers’ in the study area: gullies formations, soil accumulation around clumps of vegetation, soil deposits on gentle slopes, exposed roots, muddy water, sedimentation in streams and rivers, change in vegetation species, increased runoff, and reduced rooting depth. The direct human activities which were perceived to be causing land degradation in the study area include: deforestation and clearing of vegetation, overgrazing, steep slope cultivation and continuous cropping. The farmers’ possibility of perceiving the impact of land degradation hazard on agricultural land productivity was primarily determined by institutional, psychological, demographic and by bio-physical factors. Farmers who perceive their land as deteriorating and producing less than desired, tend to adopt improved land management practices. On the other hand, farmers who perceive their land to be fertile tend to have low adoption of conservation practices. In order to overcome this land degradation and its consequent effects, the study recommended a need for the government to enforce effective policies to control and prevent land degradation and these policies should be community inclusive /participatory founded up on indigenous and age-honored knowledge and tradition of farmers' natural resource management as well as introduced scientific practices.


2006 ◽  
Vol 86 (3) ◽  
pp. 431-439 ◽  
Author(s):  
T. Huffman ◽  
R. Ogston ◽  
T. Fisette ◽  
B. Daneshfar ◽  
P-Y. Gasser, L. White ◽  
...  

The land use and management data requirements for assessing, monitoring and reporting on the impact of agricultural production practices on the environment, especially in a country as large as Canada, are considerable. In view of the fact that environmental assessments are a relatively new phenomenon, data collection activities targeted toward these needs are not widespread. As a result, we find it necessary to acquire and integrate a variety of data sources with differing time lines, spatial scales and sampling frameworks. This paper uses our current activities with respect to Kyoto reporting as a focus to present and discuss the types of data required and the spatial analysis and integration procedures being developed to provide them. The essential data for this activity include the area of crop and land use types, land use changes since 1990, farm and land management practices and biomass production. The spatial framework selected for national analysis is the Soil Landscapes of Canada, and the primary existing data sources are the Census of Agriculture, sample-derived yield estimates and satellite-based land cover products. These are supplemented with detailed, multi-season, multi-year satellite image interpretations conducted at an ecologically and statistically stratified sample of sites across the country. The use of these data in preparing an account of greenhouse gas sources and sinks identified a number of gaps and problems, and a brief outline of future work designed to improve the data inputs is presented. Key words: Kyoto reporting, data integration, land use and management, greenhouse gases, carbon sequestration


Author(s):  
Frode Eika Sandnes

AbstractPurpose: Some universal accessibility practitioners have voiced that they experience a mismatch in the research focus and the need for knowledge within specialized problem domains. This study thus set out to identify the balance of research into the main areas of accessibility, the impact of this research, and how the research profile varies over time and across geographical regions. Method: All UAIS papers indexed in Scopus were analysed using bibliometric methods. The WCAG taxonomy of accessibility was used for the analysis, namely perceivable, operable, and understandable. Results: The results confirm the expectation that research into visual impairment has received more attention than papers addressing operable and understandable. Although papers focussing on understandable made up the smallest group, papers in this group attracted more citations. Funded research attracted fewer citations than research without funding. The breakdown of research efforts appears consistent over time and across different geographical regions. Researchers in Europe and North America have been active throughout the last two decades, while Southeast Asia, Latin America, and Middle East became active in during the last five years. There is also seemingly a growing trend of out-of-scope papers. Conclusions: Based on the findings, several recommendations are proposed to the UAIS editorial board.


2021 ◽  
Vol 13 (13) ◽  
pp. 7007
Author(s):  
Habtamu Nebere ◽  
Degefa Tolossa ◽  
Amare Bantider

In Ethiopia, the practice of land management started three decades ago in order to address the problem of land degradation and to further boost agricultural production. However, the impact of land management practices in curbing land degradation problems and improving the productivity of the agricultural sector is insignificant. Various empirical works have previously identified the determinants of the adoption rate of land management practices. However, the sustainability of land management practices after adoption, and the various factors that control the sustainability of implemented land management practices, are not well addressed. This study analyzed the factors affecting the sustainability of land management practices after implementation in Mecha Woreda, northwestern Ethiopia. The study used 378 sample respondents, selected by a systematic random sampling technique. Binary logistic regression was used to analyze the quantitative data, while the qualitative data were qualitatively and concurrently analyzed with the quantitative data. The sustained supply of fodder from the implemented land management practices, as well as improved cattle breed, increases the sustainability of the implemented land management practices. While lack of agreement in the community, lack of enforcing community bylaws, open cattle grazing, lack of benefits of implemented land management practices, acting as barrier for farming practices, poor participation of household heads during planning and decision-making processes, as well as the lack of short-term benefits, reduce the sustainability of the implemented land management practices. Thus, it is better to allow for the full participation of household heads in planning and decision-making processes to bring practical and visible results in land management practices. In addition, recognizing short-term benefits to compensate the land lost in constructing land management structures must be the strategy in land management practices. Finally, reducing the number of cattle and practicing stall feeding is helpful both for the sustainability of land management practices and the productivity of cattle. In line with this, fast-growing fodder grass species have to be introduced for household heads to grow on land management structures and communal grazing fields for stall feeding.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.


2007 ◽  
Vol 11 (6) ◽  
pp. 1811-1823 ◽  
Author(s):  
P. Cau ◽  
C. Paniconi

Abstract. Quantifying the impact of land use on water supply and quality is a primary focus of environmental management. In this work we apply a semidistributed hydrological model (SWAT) to predict the impact of different land management practices on water and agricultural chemical yield over a long period of time for a study site situated in the Arborea region of central Sardinia, Italy. The physical processes associated with water movement, crop growth, and nutrient cycling are directly modeled by SWAT. The model simulations are used to identify indicators that reflect critical processes related to the integrity and sustainability of the ecosystem. Specifically we focus on stream quality and quantity indicators associated with anthropogenic and natural sources of pollution. A multicriteria decision support system is then used to develop the analysis matrix where water quality and quantity indicators for the rivers, lagoons, and soil are combined with socio-economic variables. The DSS is used to assess four options involving alternative watersheds designated for intensive agriculture and dairy farming and the use or not of treated wastewater for irrigation. Our analysis suggests that of the four options, the most widely acceptable consists in the transfer of intensive agricultural practices to the larger watershed, which is less vulnerable, in tandem with wastewater reuse, which rates highly due to water scarcity in this region of the Mediterranean. More generally, the work demonstrates how both qualitative and quantitative methods and information can assist decision making in complex settings.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Danilo Sisto ◽  
Massimo Iovino

The multi-height (low, L = 3 cm; intermediate, M = 100 cm; high, H = 200 cm) Beerkan run methodology was applied on both a minimum tilled (MT) (i.e., up to a depth of 30 cm) and a no-tilled (NT) bare loam soil, and the soil water retention curve was estimated by the BEST-steady algorithm. Three indicators of soil physical quality (SPQ), i.e., macroporosity (Pmac), air capacity (AC) and relative field capacity (RFC) were calculated to assess the impact of water pouring height under alternative soil management practices. Results showed that, compared to the reference low run, M and H runs affected both the estimated soil water retention curves and derived SPQ indicators. Generally, M–H runs significantly reduced the mean values of Pmac and AC and increased RFC for both MT and NT soil management practices. According to the guidelines for assessment of SPQ, the M and H runs: (i) worsened Pmac classification of both MT and NT soils; (ii) did not worsen AC classification, regardless of soil management parameters; (iii) worsened RFC classification of only NT soil, as a consequence of insufficient soil aeration. For both soil management techniques, a strong negative correlation was found between the Pmac and AC values and the gravitational potential energy, Ep, of the water used for the infiltration runs. A positive correlation was detected between RFC and Ep. The relationships were plausible from a soil physics point of view. NT soil has proven to be more resilient than MT. This study contributes toward testing simple and robust methods capable of quantifying soil degradation effects, due to intense rainfall events, under different soil management practices in the Mediterranean environment.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 111-120
Author(s):  
ILICH LAMA ◽  
DEREK SAIN

Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash. Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.


2007 ◽  
Vol 87 (Special Issue) ◽  
pp. 189-201 ◽  
Author(s):  
M I Sheppard ◽  
S C Sheppard ◽  
C A Grant

Canadian consumers are demanding a sustainable agricultural industry as well as products delivered under Best Management Practices (BMPs). Trace element accumulation in soils may influence crop productivity, food quality and ecosystem and human health. Canada’s feed and foodstuff export industry has already faced cases of penalties for high trace element content [cadmium (Cd) in durum wheat]. Thus, it is imperative to be able to estimate the accumulation and potential short- and long-term impacts of trace elements in soil. A national-level Trace Element Indicator (TEI) based on present loadings of trace elements to agricultural land is in progress. An Expert Panel including Canadian, American and Australian experts guided the assembly of a proposed methodology for this TEI. The proposed TEI, described briefly here, is a critical load approach with a single expression of the risk of impact from single or multiple trace elements from multiple sources (manures, biosolids, effluents and fertilizers and natural processes), invoked in a stochastic manner. Two key data requirements are the current background levels of trace elements in soil, and the leachability of these trace elements. A survey of total and soluble concentrations of 54 elements in up to 112 soils was completed. Although preliminary in scope, these represent key soil series in Canada. From this, a database of the solid/liquid partition coefficient, Kd, was computed. These Kd values will be used to characterize the leachability of the trace elements. Key words: Cadmium, copper, zinc, lead, nickel, uranium, metals, Kd, distribution coefficient


Sign in / Sign up

Export Citation Format

Share Document