Receptor revision in T cells: an open question?

2004 ◽  
Vol 25 (6) ◽  
pp. 276-279 ◽  
Author(s):  
Raul Mostoslavsky ◽  
Frederick W Alt
Keyword(s):  
T Cells ◽  
2020 ◽  
Author(s):  
Fanny Lafouresse ◽  
Romain Jugele ◽  
Sabina Müller ◽  
Marine Doineau ◽  
Valérie Duplan-Eche ◽  
...  

AbstractCytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy and live cell imaging. We show that CD107a+-intracellular vesicles, perforin and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual CTL dictates CTL killing capacity. Together, our results show the stochastic asymmetric distribution of effector molecules in dividing CD8+ T cells. They propose uneven mitotic repartition of pre-packaged lytic components as a mechanism generating non-hereditary functional heterogeneity in CTL.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fanny Lafouresse ◽  
Romain Jugele ◽  
Sabina Müller ◽  
Marine Doineau ◽  
Valérie Duplan-Eche ◽  
...  

Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy and live cell imaging. We show that CD107a+-intracellular vesicles, perforin and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual CTL dictates CTL killing capacity. Together, our results show the stochastic asymmetric distribution of effector molecules in dividing CD8+ T cells. They propose uneven mitotic repartition of pre-packaged lytic components as a mechanism generating non-hereditary functional heterogeneity in CTL.


1997 ◽  
Vol 161 ◽  
pp. 203-218 ◽  
Author(s):  
Tobias C. Owen

AbstractThe clear evidence of water erosion on the surface of Mars suggests an early climate much more clement than the present one. Using a model for the origin of inner planet atmospheres by icy planetesimal impact, it is possible to reconstruct the original volatile inventory on Mars, starting from the thin atmosphere we observe today. Evidence for cometary impact can be found in the present abundances and isotope ratios of gases in the atmosphere and in SNC meteorites. If we invoke impact erosion to account for the present excess of129Xe, we predict an early inventory equivalent to at least 7.5 bars of CO2. This reservoir of volatiles is adequate to produce a substantial greenhouse effect, provided there is some small addition of SO2(volcanoes) or reduced gases (cometary impact). Thus it seems likely that conditions on early Mars were suitable for the origin of life – biogenic elements and liquid water were present at favorable conditions of pressure and temperature. Whether life began on Mars remains an open question, receiving hints of a positive answer from recent work on one of the Martian meteorites. The implications for habitable zones around other stars include the need to have rocky planets with sufficient mass to preserve atmospheres in the face of intensive early bombardment.


2001 ◽  
Vol 120 (5) ◽  
pp. A192-A192
Author(s):  
H TAKAISHI ◽  
T DENNING ◽  
K ITO ◽  
R MIFFLIN ◽  
P ERNST

2001 ◽  
Vol 120 (5) ◽  
pp. A321-A321
Author(s):  
A KHORUTS ◽  
K THORSTENSON
Keyword(s):  
T Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document