Nephrogenic systemic fibrosis is associated with transforming growth factor β and Smad without evidence of renin-angiotensin system involvement

2008 ◽  
Vol 58 (6) ◽  
pp. 1025-1030 ◽  
Author(s):  
Brent Kelly ◽  
Matthew Petitt ◽  
Ramon Sanchez
2018 ◽  
Vol 19 (3) ◽  
pp. 147032031880300 ◽  
Author(s):  
Chung-Ming Chen ◽  
Shu-Hui Juan ◽  
Hsiu-Chu Chou

Introduction: The renin–angiotensin system and epithelial–mesenchymal transition play crucial roles in the development of kidney fibrosis. The connection between the renin–angiotensin system and transforming growth factor-β in epithelial–mesenchymal transition remains largely unknown. Materials and methods: We assessed oxidative stress, cytokine levels, renal morphology, profibrotic growth factor and renin–angiotensin system component expression, and cell-specific E- and N-cadherin expression in the kidneys of gerbils with streptozotocin-induced diabetes mellitus. Results: Animals in the experimental group received an intraperitoneal injection of streptozotocin to induce diabetes. The diabetic gerbil kidneys presented kidney injury, which was manifested as distorted glomeruli, necrosis of tubular cells, dilated tubular lumen, and brush border loss. Additionally, the diabetic gerbil kidneys exhibited significantly higher expressions of 8-hydroxy-2′-deoxyguanosine, nuclear factor-kB, toll-like receptor 4, tumor necrosis factor-α, transforming growth factor-β, connective tissue growth factor, α-smooth muscle actin, and N-cadherin and higher collagen deposition than did the control gerbil kidneys. Compared with the control kidneys, the diabetic gerbil kidneys exhibited significantly lower E-cadherin expression. These epithelial–mesenchymal transition characteristics were associated with an increase in renin–angiotensin system expression in the diabetic gerbils. Conclusions: We demonstrate that hyperglycemia activated the renin–angiotensin system, induced epithelial–mesenchymal transition, and contributed to kidney fibrosis in an experimental diabetes mellitus model.


Author(s):  
Daan C.H. van Dorst ◽  
Nathalie P. de Wagenaar ◽  
Ingrid van der Pluijm ◽  
Jolien W. Roos-Hesselink ◽  
Jeroen Essers ◽  
...  

AbstractThoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.


2019 ◽  
Vol 47 (7) ◽  
pp. 799-816 ◽  
Author(s):  
Leslie A. Obert ◽  
Kendall S. Frazier

Chronic progressive nephropathy (CPN) is the most commonly encountered spontaneous background finding in laboratory rodents. Various theories on its pathogenesis have been proposed, but there is a paucity of data regarding specific mechanisms or physiologic pathways involved in early CPN development. The current CPN mechanism of action for tumorigenesis is largely based on its associated increase in tubular cell proliferation without regard to preceding subcellular degenerative changes. Combing through the published literature from multiple biology disciplines provided insight into the preceding cellular events. Mechanistic pathways involved in the progressive age-related decline in rodent kidney function and several key inflexion points have been identified. These critical pathway factors were then connected using data from renal models from multiple rodent strains, other species, and mechanistic work in humans to form a cohesive picture of pathways and protein interactions. Abundant data linked similar renal pathologies to local events involving hypoxia (hypoxia-inducible factor 1α), altered intrarenal renin–angiotensin system (RAS), oxidative stress (nitric oxide), and pro-inflammatory pathways (transforming growth factor β), with positive feedback loops and downstream effectors amplifying the injury and promoting scarring. Intrarenal RAS alterations seem to be central to all these events and may be critical to CPN development and progression.


2010 ◽  
Vol 299 (3) ◽  
pp. H577-H583 ◽  
Author(s):  
Richard N. Re ◽  
Julia L. Cook

In recent years the actions of intracellular-acting, extracellular signaling proteins/peptides (intracrines) have become increasingly defined. General principles of intracrine action have been proposed. Mitochondria represent one locus of intracrine action, and thus far, angiotensin II, transforming growth factor-β, growth hormone, atrial natriuretic peptide, Wnt 13, stanniocalcin, other renin-angiotensin system components, and vascular endothelial-derived growth factor, among others, have been shown to be mitochondria-localizing intracrines. The implications of this mitochondrial intracrine biology are discussed.


Sign in / Sign up

Export Citation Format

Share Document