Low temperature microwave assisted hydrothermal carbonization (MAHC) reduces combustion emission precursors in short rotation coppice willow wood

2018 ◽  
Vol 134 ◽  
pp. 162-166 ◽  
Author(s):  
Victoria Knappe ◽  
Sebastian Paczkowski ◽  
Julian Tejada ◽  
Luis Alonzo Diaz Robles ◽  
Alain Gonzales ◽  
...  
2016 ◽  
Vol 119 ◽  
pp. 224-232 ◽  
Author(s):  
Mattia Bartoli ◽  
Luca Rosi ◽  
Alessio Giovannelli ◽  
Piero Frediani ◽  
Marco Frediani

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8229
Author(s):  
Sebastian Paczkowski ◽  
Victoria Knappe ◽  
Marta Paczkowska ◽  
Luis Alonzo Diaz Robles ◽  
Dirk Jaeger ◽  
...  

The worldwide transformation from fossil fuels to sustainable energy sources will increase the demand for biomass. However, the ash content of many available biomass sources exceeds the limits of national standards. In this study, short-rotation coppice willow biomass was hydrothermally treated at 150, 170 and 185 °C. The higher heating value increased by 2.6% from x¯ = 19,279 J × g−1 to x¯ = 19,793 J × g−1 at 185 °C treatment temperature. The mean ash content was reduced by 53% from x¯ = 1.97% to x¯ = 0.93% at 170 °C treatment temperature, which was below the limit for category TW1b of the European pellet standard for thermally treated biomass. The nitrogen, sulfur and cadmium concentrations were reduced below the limits for category TW1b of the European biomass pellet standard (N: from 0.52% to 0.34%, limit at 0.5%; S: from 0.051% to 0.024%, limit at 0.04%; Cd: from 0.83 mg × kg−1 to 0.37 mg × kg−1, limit at 0.5 mg × kg−1). The highest reduction rates were sampled for phosphor (80–84%), potassium (78–90%), chlorine (96–98%) and lithium (96–98%). The reduction behavior of the elements is discussed according to the chemical processes at the onset of hydrothermal carbonization. The results of this study show that HTT has the potential to expand the availability of biomass for the increasing worldwide demand in the future.


Author(s):  
Victoria Knappe ◽  
Sebastian Paczkowski ◽  
Luis Alonso Diaz Robles ◽  
Alain Gonzales ◽  
Stefan Pelz

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 200-209
Author(s):  
Caiyun Zhang ◽  
Chunhong Li ◽  
Bolin Ji ◽  
Zhaohui Jiang

Abstract A fast, simple, and energy-saving microwave-assisted approach was successfully developed to prepare carbon microspheres. The carbon microspheres with a uniform particle size and good dispersity were prepared using glucose as the raw material and HCl as the dehydrating agent at low temperature (90°C) in an open system with the assistance of microwave heating. The carbon microspheres were characterized by elemental analysis, XRD, SEM, FTIR, TG, and Raman. The results showed that the carbon microspheres prepared under the condition of 18.5% (v/v) HCl and heating for 30 min by microwave had a narrow size distribution. The core–shell structure of the carbon core and TiO2 shell was prepared with (NH4)2TiF6, H3BO3 using the microwave-assisted method. The hollow TiO2 microspheres with good crystallinity and high photocatalytic properties were successfully prepared by sacrificing the carbon microspheres.


GCB Bioenergy ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1283-1297 ◽  
Author(s):  
Gerald Kalt ◽  
Andreas Mayer ◽  
Michaela C. Theurl ◽  
Christian Lauk ◽  
Karl‐Heinz Erb ◽  
...  

GCB Bioenergy ◽  
2021 ◽  
Author(s):  
Kang Kang ◽  
Tianle Zhang ◽  
Guotao Sun ◽  
Mingqiang Zhu ◽  
Kankan Li ◽  
...  

New Forests ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 969-990 ◽  
Author(s):  
Maurizio Ventura ◽  
Pietro Panzacchi ◽  
Enrico Muzzi ◽  
Federico Magnani ◽  
Giustino Tonon

2020 ◽  
Vol 4 (8) ◽  
pp. 2070081
Author(s):  
Giuseppe Melilli ◽  
Karin H. Adolfsson ◽  
Andrea Impagnatiello ◽  
Giancarlo Rizza ◽  
Minna Hakkarainen

Sign in / Sign up

Export Citation Format

Share Document