scholarly journals TCT-258 Relationship Between Myocardial Mass and Post-PCI Fractional Flow Reserve

2021 ◽  
Vol 78 (19) ◽  
pp. B106
Author(s):  
Niya Mileva ◽  
Takuya Mizukami ◽  
Pasquale Paolisso ◽  
Jeroen Sonck ◽  
Daniele Andreini ◽  
...  
2021 ◽  
pp. 153537022110271
Author(s):  
Jincheng Liu ◽  
Bao Li ◽  
Junling Ma ◽  
Xue Wang ◽  
Liyuan Zhang ◽  
...  

This study aimed to examine whether the ratio of vessel-specific coronary arterial lumen volume to the fraction of myocardial mass (VR/MR) affects myocardial ischemia. We proposed a calculation method for VR/MR, and compared the ratio of total epicardial coronary arterial lumen volume to left ventricular myocardial mass (V/M) with VR/MR in predicting myocardial ischemia. VR/MR and V/M were computed using data from 205 patients with 241 stenosis vessel who underwent coronary computed tomography angiography (CTA), quantitative coronary angiography, and fractional flow reserve. The vessel-specific coronary arterial lumen volume (VR) was obtained from CTA by segmenting the coronary arterial lumen volume, while the vessel-specific fraction of myocardial mass (MR) was obtained by allometric scaling. The VR/MR was then calculated. The cut-off values of V/M (23.55 mm3/g) and VR/MR (12.98 mm3/g) were used to define equal groups of ischemic and non-ischemic patients, respectively. Using these cut-off values, the accuracy, specificity, sensitivity, positive predictive value, and negative predictive value of V/M were 60%, 76%, 45%, 57%, and 66%, and of VR/MR were 87%, 92%, 77%, 89%, and 83%, respectively. Patients have different VR/MR values in different stenotic coronary arteries. Clinically, VR/MR is a quantitative indicator of the risk of myocardial ischemia.


2016 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Shah R Mohdnazri ◽  
◽  
◽  
◽  
Thomas R Keeble ◽  
...  

Fractional flow reserve (FFR) has been shown to improve outcomes when used to guide percutaneous coronary intervention (PCI). There have been two proposed cut-off points for FFR. The first was derived by comparing FFR against a series of non-invasive tests, with a value of ≤0.75 shown to predict a positive ischaemia test. It was then shown in the DEFER study that a vessel FFR value of ≥0.75 was associated with safe deferral of PCI. During the validation phase, a ‘grey zone’ for FFR values of between 0.76 and 0.80 was demonstrated, where a positive non-invasive test may still occur, but sensitivity and specificity were sub-optimal. Clinical judgement was therefore advised for values in this range. The FAME studies then moved the FFR cut-off point to ≤0.80, with a view to predicting outcomes. The ≤0.80 cut-off point has been adopted into clinical practice guidelines, whereas the lower value of ≤0.75 is no longer widely used. Here, the authors discuss the data underpinning these cut-off values and the practical implications for their use when using FFR guidance in PCI.


Sign in / Sign up

Export Citation Format

Share Document