Binding of upstream stimulatory factor 1 to the E-Box regulates the 4G/5G polymorphism–dependent plasminogen activator inhibitor 1 expression in mast cells

2008 ◽  
Vol 121 (4) ◽  
pp. 1006-1012.e2 ◽  
Author(s):  
Zhongcai Ma ◽  
BongSook Jhun ◽  
Sandy Y. Jung ◽  
Chad K. Oh
Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2657-2666 ◽  
Author(s):  
Anatoly Samoylenko ◽  
Ulrike Roth ◽  
Kurt Jungermann ◽  
Thomas Kietzmann

Abstract Plasminogen activator inhibitor-1 (PAI-1) expression is induced by hypoxia (8% O2) via the PAI-1 promoter region −175/−159 containing a hypoxia response element (HRE-2) binding the hypoxia-inducible factor-1 (HIF-1) and an adjacent response element (HRE-1) binding a so far unknown factor. The aim of the present study was to identify this factor and to investigate its role in the regulation of PAI-1 expression. It was found by supershift assays that the upstream stimulatory factor-2a (USF-2a) bound mainly to the HRE-1 of the PAI-1 promoter and to a lesser extent to HRE-2. Overexpression of USF-2a inhibited PAI-1 messenger RNA and protein expression and activated L-type pyruvate kinase expression in primary rat hepatocytes under normoxia and hypoxia. Luciferase (Luc) gene constructs driven by 766 and 276 base pairs of the 5′-flanking region of the PAI-1 gene were transfected into primary hepatocytes together with expression vectors encoding wild-type USF-2a and a USF-2a mutant lacking DNA binding and dimerization activity (ΔHU2a). Cotransfection of the wild-type USF-2a vector reduced Luc activity by about 8-fold, whereas cotransfection of ΔHU2a did not influence Luc activity. Mutation of the HRE-1 (−175/−168) in the PAI-1 promoter Luc constructs decreased USF-dependent inhibition of Luc activity. Mutation of the HRE-2 (−165/−158) was less effective. Cotransfection of a HIF-1α vector could compete for the binding of USF at HRE-2. These results indicated that the balance between 2 transcriptional factors, HIF-1 and USF-2a, which can bind adjacent HRE sites, appears to be involved in the regulation of PAI-1 expression in many clinical conditions.


2002 ◽  
Vol 18 (2) ◽  
pp. 142-154
Author(s):  
A. A. Samoylenko ◽  
U. Roth ◽  
K. Jungermann ◽  
Th. Kietzmann ◽  
M. Yu. Obolenska

Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 517-523 ◽  
Author(s):  
Johann Wojta ◽  
Christoph Kaun ◽  
Gerlinde Zorn ◽  
Minoo Ghannadan ◽  
Alexander W. Hauswirth ◽  
...  

Abstract We have recently shown that resting human mast cells (MCs) produce tissue-type plasminogen activator (t-PA) without simultaneously expressing plasminogen activator inhibitor 1 (PAI-1). In the present study we have identified the anaphylatoxin rhC5a as a potent inducer of PAI-1 expression in human MCs and basophils. In primary human skin MCs and primary blood basophils, exposure to rhC5a was followed by an increase from undetectable to significant levels of PAI-1. In addition, rhC5a induced a concentration- and time-dependent increase in PAI-1 antigen in the MC line HMC-1 and the basophil cell line KU-812 and increased the expression of PAI-1 mRNA in HMC-1. In conditioned media of HMC-1 treated with rhC5a, active PAI-1 could be detected. A simultaneous loss of t-PA activity in conditioned media from the same cells indicated that rhC5a-induced PAI-1 was capable of inhibiting the enzymatic activity of coproduced t-PA. Correspondingly, the levels of t-PA–PAI-1 complexes increased in rhC5a-treated cells. When HMC-1 cells were incubated with pertussis toxin or anti-C5a receptor antibodies, the effect of rhC5a on PAI-1 production was completely abolished. Treatment of C5a with plasmin resulted in loss of its ability to induce PAI-1 production in MCs. Considering the suggested role for MCs and components of the complement system in the development of cardiovascular diseases, we hypothesize that MCs, by producing t-PA in a resting state and by expressing PAI-1 when activated by C5a, might participate in the modulation of the balance between proteases and protease inhibitors regulating tissue injury and repair in such disease processes.


Oncotarget ◽  
2015 ◽  
Vol 6 (27) ◽  
pp. 23647-23661 ◽  
Author(s):  
Ananya Roy ◽  
Antoine Coum ◽  
Voichita D. Marinescu ◽  
Jelena Põlajeva ◽  
Anja Smits ◽  
...  

2007 ◽  
Vol 98 (08) ◽  
pp. 296-303 ◽  
Author(s):  
Elitsa Dimova ◽  
Malgorzata Jakubowska ◽  
Thomas Kietzmann

SummaryPlasminogen activator inhibitor-1 (PAI-1) controls the regulation of the fibrinolytic system in blood by inhibiting both urokinase-type and tissue-type plasminogen activators. Enhanced levels of PAI-1 are related to pathological conditions associated with hypoxia or hyperinsulinemia. In this study, we investigated the regulation of PAI-1 expression by glucagon and the cAMP/ PKA/CREB signalling pathway in the liver. Stimulation of the cAMP/PKA/CREB signalling cascade by starvation in vivo or glucagon in vitro induced PAI-1 gene expression in liver. Furthermore, this response was associated with enhanced phosphorylation of CREB. By using EMSAs we found that three promoter elements, the HRE2, E-box 4 and E-box 5, were able to bind CREB but only the HRE2 and E5 appeared to be functionally active. Reporter gene assays confirmed that cAMP induced PAI-1 gene transcription via the same element in both human and rat promoters. Interestingly, although the HRE2 was involved, the glucagon/cAMP pathway had no influence on hypoxia-inducible factor-1 (HIF-1) mRNA and protein levels. Thus, CREB binding to the HIF-1 responsive elements in PAI-1 promoter mediates the glucagon effect in the liver.


Sign in / Sign up

Export Citation Format

Share Document