Differential Gene Expression in Young Vs Aged Mice Infected with Respiratory Syncytial Virus

2013 ◽  
Vol 131 (2) ◽  
pp. AB8
Author(s):  
Terianne M. Wong ◽  
Sandhya Boyapalle ◽  
Siddarth Kamath ◽  
Huy Nguyen ◽  
Subhra Mohapatra ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246695
Author(s):  
Maxim Lebedev ◽  
Heather A. McEligot ◽  
Victoria N. Mutua ◽  
Paul Walsh ◽  
Francisco R. Carvallo Chaigneau ◽  
...  

Bovine Respiratory Syncytial virus (BRSV) is one of the major infectious agents in the etiology of the bovine respiratory disease complex. BRSV causes a respiratory syndrome in calves, which is associated with severe bronchiolitis. In this study we describe the effect of treatment with antiviral fusion protein inhibitor (FPI) and ibuprofen, on gene expression in lung tissue of calves infected with BRSV. Calves infected with BRSV are an excellent model of human RSV in infants: we hypothesized that FPI in combination with ibuprofen would provide the best therapeutic intervention for both species. The following experimental treatment groups of BRSV infected calves were used: 1) ibuprofen day 3–10, 2) ibuprofen day 5–10, 3) placebo, 4) FPI day 5–10, 5) FPI and ibuprofen day 5–10, 6) FPI and ibuprofen day 3–10. All calves were infected with BRSV on day 0. Daily clinical evaluation with monitoring of virus shedding by qRT-PCR was conducted. On day10 lung tissue with lesions (LL) and non-lesional (LN) was collected at necropsy, total RNA extracted, and RNA sequencing performed. Differential gene expression analysis was conducted with Gene ontology (GO) and KEGG pathway enrichment analysis. The most significant differential gene expression in BRSV infected lung tissues was observed in the comparison of LL with LN; oxidative stress and cell damage was especially noticeable. Innate and adaptive immune functions were reduced in LL. As expected, combined treatment with FPI and Ibuprofen, when started early, made the most difference in gene expression patterns in comparison with placebo, especially in pathways related to the innate and adaptive immune response in both LL and LN. Ibuprofen, when used alone, negatively affected the antiviral response and caused higher virus loads as shown by increased viral shedding. In contrast, when used with FPI Ibuprofen enhanced the specific antiviral effect of FPI, due to its ability to reduce the damaging effect of prostanoids and oxidative stress.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dayle Johnston ◽  
Bernadette Earley ◽  
Matthew S. McCabe ◽  
Ken Lemon ◽  
Catherine Duffy ◽  
...  

Abstract Bovine Respiratory Disease (BRD) is the leading cause of mortality in calves. The objective of this study was to examine the response of the host’s bronchial lymph node transcriptome to Bovine Respiratory Syncytial Virus (BRSV) in a controlled viral challenge. Holstein-Friesian calves were either inoculated with virus (103.5 TCID50/ml × 15 ml) (n = 12) or mock challenged with phosphate buffered saline (n = 6). Clinical signs were scored daily and blood was collected for haematology counts, until euthanasia at day 7 post-challenge. RNA was extracted and sequenced (75 bp paired-end) from bronchial lymph nodes. Sequence reads were aligned to the UMD3.1 bovine reference genome and differential gene expression analysis was performed using EdgeR. There was a clear separation between BRSV challenged and control calves based on gene expression changes, despite an observed mild clinical manifestation of the disease. Therefore, measuring host gene expression levels may be beneficial for the diagnosis of subclinical BRD. There were 934 differentially expressed genes (DEG) (p < 0.05, FDR <0.1, fold change >2) between the BRSV challenged and control calves. Over-represented gene ontology terms, pathways and molecular functions, among the DEG, were associated with immune responses. The top enriched pathways included interferon signaling, granzyme B signaling and pathogen pattern recognition receptors, which are responsible for the cytotoxic responses necessary to eliminate the virus.


Sign in / Sign up

Export Citation Format

Share Document