scholarly journals Critical role of mammalian target of rapamycin for IL-10 dendritic cell induction by a flagellin A conjugate in preventing allergic sensitization

2018 ◽  
Vol 141 (5) ◽  
pp. 1786-1798.e11 ◽  
Author(s):  
Stefan Schülke ◽  
Anna-Helena Fiedler ◽  
Ann-Christine Junker ◽  
Adam Flaczyk ◽  
Sonja Wolfheimer ◽  
...  
2010 ◽  
Vol 185 (7) ◽  
pp. 3919-3931 ◽  
Author(s):  
Michael Haidinger ◽  
Marko Poglitsch ◽  
Rene Geyeregger ◽  
Sudhir Kasturi ◽  
Maximilian Zeyda ◽  
...  

Gerontology ◽  
2018 ◽  
Vol 64 (3) ◽  
pp. 205-211 ◽  
Author(s):  
Candice E. Van Skike ◽  
Veronica Galvan

Cerebrovascular dysfunction is detected prior to the onset of cognitive and histopathological changes in Alzheimer's disease (AD). Increasing evidence indicates a critical role of cerebrovascular dysfunction in the initiation and progression of AD. Recent studies identified the mechanistic/mammalian target of rapamycin (mTOR) as a critical effector of cerebrovascular dysfunction in AD. mTOR has a key role in the regulation of metabolism, but some mTOR-dependent mechanisms are uniquely specific to the regulation of cerebrovascular function. These include the regulation of cerebral blood flow, blood-brain barrier integrity and maintenance, neurovascular coupling, and cerebrovascular reactivity. This article examines the available evidence for a role of mTOR-driven cerebrovascular dysfunction in the pathogenesis of AD and of vascular cognitive impairment and dementia (VCID) and highlights the therapeutic potential of targeting mTOR and/or specific downstream effectors for vasculoprotection in AD, VCID, and other age-associated neurological diseases with cerebrovascular etiology.


2020 ◽  
Vol 32 (10) ◽  
pp. 929
Author(s):  
Chinju Johnson ◽  
John Kastelic ◽  
Jacob Thundathil

The critical role of insulin-like growth factor (IGF) 1 in promoting Sertoli cell proliferation invivo and invitro has been established, but its downstream signalling mechanisms remain unknown. In addition to mitogenic effects, a role for IGF1 in mediating cholesterol biosynthesis within testes has been implied. The aims of this study were to investigate the roles of: (1) phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) signalling in IGF1-mediated Sertoli cell proliferation; and (2) IGF1 in mediating cholesterol biosynthesis in Sertoli cells. Primary cultures of Sertoli cells were prepared from 1-week-old porcine testes. On Day 3 of culture, Sertoli cells were treated with 300ng mL−1 IGF1, alone or in combination with inhibitors of IGF1 receptor (2μM picropodophyllotoxin), Akt (1μM wortmannin) or mTOR (200nM rapamycin). Cells were cultured for 30min and phosphorylation levels of Akt, mTOR and p70 ribosomal protein S6 kinase (p70S6K) were determined by immunoblotting. Cell proliferation and quantitative polymerase chain reaction assays were conducted using cells cultured for 24h. IGF1 increased phosphorylation of Akt, mTOR and p70S6K and cell proliferation, and these effects were inhibited by inhibitors of IGF1R, Akt and mTOR. Furthermore, IGF1 upregulated the expression of cholesterol biosynthetic genes (3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS1) and cytochrome P450, family 5, subfamily A, polypeptide 1 (CYP5A1)), but not sterol regulatory element-binding transcription factor 1 (SREBF1). Increased phosphorylation of p70S6K, a major downstream target of mTOR, and upregulated expression of genes involved in cholesterol biosynthesis are indicative of the key role played by IGF1 in regulating the synthesis of cholesterol, the precursor for steroid hormones.


2015 ◽  
Vol 94 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Yen-Lin Lin ◽  
Shun-Hua Chen ◽  
Jiu-Yao Wang

2015 ◽  
Vol 114 (11) ◽  
pp. 969-981 ◽  
Author(s):  
Esther López ◽  
Alejandro Berna-Erro ◽  
Javier J. López ◽  
María P. Granados ◽  
Nuria Bermejo ◽  
...  

SummaryThe function of the mammalian target of rapamycin (mTOR) is upregulated in response to cell stimulation with growing and differentiating factors. Active mTOR controls cell proliferation, differentiation and death. Since mTOR associates with different proteins to form two functional macromolecular complexes, we aimed to investigate the role of the mTORI and mTOR2 complexes in MEG-01 cell physiology in response to thrombopoietin (TPO). By using mTOR antagonists and overexpressing FKBP38, we have explored the role of both mTOR complexes in proliferation, apoptosis, maturation-like mechanisms, endoplasmic reticulum-stress and the intracellular location of both active mTOR complexes during MEG-01 cell stimulation with TPO. The results demonstrate that mTOR1 and mTOR2 complexes play different roles in the physiology of MEG-01 cells and in the maturation-like mechanisms; hence, these findings might help to understand the mechanism underlying generation of platelets.


Author(s):  
Evgeniy Panzhinskiy ◽  
Bruce Culver ◽  
Jun Ren ◽  
Debasis Bagchi ◽  
Sreejayan Nair

2021 ◽  
Vol 13 (11) ◽  
pp. 1632-1647
Author(s):  
Katharina Joechle ◽  
Jessica Guenzle ◽  
Claus Hellerbrand ◽  
Pavel Strnad ◽  
Thorsten Cramer ◽  
...  

2011 ◽  
Vol 27 (Supplement) ◽  
pp. OP04_2
Author(s):  
Koichi Nagashima ◽  
Takeshi Yamashita ◽  
Akiko Sekiguchi ◽  
Ichiro Watanabe ◽  
Atsushi Hirayama

Sign in / Sign up

Export Citation Format

Share Document