scholarly journals A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols

2018 ◽  
Vol 117 ◽  
pp. 54-62 ◽  
Author(s):  
S. Vratolis ◽  
P. Fetfatzis ◽  
A. Argyrouli ◽  
A. Papayannis ◽  
D. Müller ◽  
...  
2015 ◽  
Vol 15 (5) ◽  
pp. 2521-2531 ◽  
Author(s):  
R. Yuan ◽  
T. Luo ◽  
J. Sun ◽  
Z. Zeng ◽  
C. Ge ◽  
...  

Abstract. The atmospheric refractive index consists of both real and imaginary parts. The intensity of refractive index fluctuations is generally expressed as the refractive index structure parameter, with the real part reflecting the strength of atmospheric turbulence and the imaginary part reflecting absorption in the light path. A large aperture scintillometer (LAS) is often used to measure the structure parameter of the real part of the atmospheric refractive index, from which the sensible and latent heat fluxes can further be obtained, whereas the influence of the imaginary part is ignored or considered noise. In this theoretical analysis study, the relationship between logarithmic light intensity variance and the atmospheric refractive index structure parameter (ARISP), as well as that between the logarithmic light intensity structure function and the ARISP, is derived. Additionally, a simple expression for the imaginary part of the ARISP is obtained which can be conveniently used to determine the imaginary part of the ARISP from LAS measurements. Moreover, these relationships provide a new method for estimating the outer scale of turbulence. Light propagation experiments were performed in the urban surface layer, from which the imaginary part of the ARISP was calculated. The experimental results showed good agreement with the presented theory. The results also suggest that the imaginary part of the ARISP exhibits a different diurnal variation from that of the real part. For the wavelength of light used (0.62 μm), the variation of the imaginary part of the ARISP is related to both the turbulent transport process and the spatial distribution characteristics of aerosols.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Marco Ajello ◽  
Nicola Marengo ◽  
Paolo Pacca ◽  
Federico Pecoraro ◽  
Francesco Zenga ◽  
...  

2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


1996 ◽  
Vol 50 (8) ◽  
pp. 1047-1057 ◽  
Author(s):  
John E. Bertie ◽  
Zhida Lan

The previously reported nonreproducibility of the intensity of the OH stretching band of liquid water has been explored. It was found that it can be eliminated in measurements with the Circle® multiple ATR cell by ensuring that the ATR rod is coaxial with the glass liquid holder. It was also found that normal laboratory temperature variations of a few degrees change the intensity by ⩽∼1% of the peak height. A new imaginary refractive index spectrum of water has been determined between 4000 and 700 cm1 as the average of spectra calculated from ATR spectra recorded by four workers in our laboratory over the past seven years. It was obtained under experimental and computational conditions superior to those used previously, but is only marginally different from the spectra reported in 1989. In particular, the integrated intensities of the fundamentals are not changed significantly from those reported in 1989. The available imaginary refractive index, k, values between 15,000 and 1 cm−1 have been compared. The values that are judged to be the most reliable have been combined into a recommended k spectrum of H2O(l) at 25 °C between 15,000 and 1 cm−1, from which the real refractive index spectrum has been calculated by Kramers–Kronig transformation. The recommended values of the real and imaginary refractive indices and molar absorption coefficients of liquid water at 25 ± 1 °C are presented in graphs and tables. The real and imaginary dielectric constants and the real and imaginary molar polarizabilities in this wavenumber range can be calculated from the tables. Conservatively estimated probable errors of the recommended k values are given. The precision with which the values can be measured in one laboratory and the relative errors between regions are, of course, far smaller than these probable errors. The recommended k values should be of considerable value as interim standard intensities of liquid water, which will facilitate the transfer of intensities between laboratories.


1989 ◽  
Vol 178 (1-2) ◽  
pp. 525-528 ◽  
Author(s):  
Li Yajun ◽  
Wang Xianxiu ◽  
Pang Xiaomin ◽  
Hua Yuling ◽  
Fan Junqing

2021 ◽  
Vol 14 (6) ◽  
pp. 4755-4771
Author(s):  
William G. K. McLean ◽  
Guangliang Fu ◽  
Sharon P. Burton ◽  
Otto P. Hasekamp

Abstract. This study presents an investigation of aerosol microphysical retrievals from high spectral resolution lidar (HSRL) measurements. Firstly, retrievals are presented for synthetically generated lidar measurements, followed by an application of the retrieval algorithm to real lidar measurements. Here, we perform the investigation for an aerosol state vector that is typically used in multi-angle polarimeter (MAP) retrievals, so that the results can be interpreted in relation to a potential combination of lidar and MAP measurements. These state vectors correspond to a bimodal size distribution, where column number, effective radius, and effective variance of both modes are treated as fit parameters, alongside the complex refractive index and particle shape. The focus is primarily on a lidar configuration based on that of the High Spectral Resolution Lidar-2 (HSRL-2), which participated in the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, a combined project between NASA and SRON (Netherlands Institute for Space Research). The measurement campaign took place between October and November 2017, over the western region of the USA. Six different instruments were mounted on the aeroplane: four MAPs and two lidar instruments, HSRL-2 and the Cloud Physics Lidar (CPL). Most of the flights were carried out over land, passing over scenes with a low aerosol load. One of the flights passed over a prescribed forest fire in Arizona on 9 November, with a relatively higher aerosol optical depth (AOD), and it is the data from this flight that are focussed on in this study. A retrieval of the aerosol microphysical properties of the smoke plume mixture was attempted with the data from HSRL-2 and compared with a retrieval from the MAPs carried out in previous work pertaining to the ACEPOL data. The synthetic HSRL-2 retrievals resulted for the fine mode in a mean absolute error (MAE) of 0.038 (0.025) µm for the effective radius (with a mean truth value of 0.195 µm), 0.052 (0.037) for the real refractive index, 0.010 (7.20×10-3) for the imaginary part of the refractive index, 0.109 (0.071) for the spherical fraction, and 0.054 (0.039) for the AOD at 532 nm, where the retrievals inside brackets indicate the MAE for noise-free retrievals. For the coarse mode, we find the MAE is 0.459 (0.254) µm for the effective radius (with a mean truth value of 1.970 µm), 0.085 (0.075) for the real refractive index, 2.06×10-4 (1.90×10-4) for the imaginary component, 0.120 (0.090) for the spherical fraction, and 0.051 (0.039) for the AOD. A study of the sensitivity of retrievals to the choice of prior and first guess showed that, on average, the retrieval errors increase when the prior deviates too much from the truth value. These experiments revealed that the measurements primarily contain information on the size and shape of the aerosol, along with the column number. Some information on the real component of the refractive index is also present, with the measurements providing little on absorption or on the effective variance of the aerosol distribution, as both of these were shown to depend heavily on the choice of prior. Retrievals using the HSRL-2 smoke-plume data yielded, for the fine mode, an effective radius of 0.107 µm, a real refractive index of 1.561, an imaginary component of refractive index of 0.010, a spherical fraction of 0.719, and an AOD at 532 nm of 0.505. Additionally, the single-scattering albedo (SSA) from the HSRL-2 retrievals was 0.940. Overall, these results are in good agreement with those from the Spectropolarimeter for Planetary Exploration (SPEX) and Research Scanning Polarimeter (RSP) retrievals.


2014 ◽  
Vol 150 (12) ◽  
pp. 2143-2183 ◽  
Author(s):  
Matthew Strom Borman ◽  
Mark McLean

AbstractThe width of a Lagrangian is the largest capacity of a ball that can be symplectically embedded into the ambient manifold such that the ball intersects the Lagrangian exactly along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy. In this paper we introduce a new method for bounding the width of a Lagrangian$Q$by considering the Lagrangian Floer cohomology of an auxiliary Lagrangian$L$with respect to a Hamiltonian whose chords correspond to geodesic paths in$Q$. This is formalized as a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated energy–capacity inequality with the help of a closed–open map. For any orientable Lagrangian$Q$admitting a metric of non-positive sectional curvature in a Liouville manifold, we show the width of$Q$is bounded above by four times its displacement energy.


Sign in / Sign up

Export Citation Format

Share Document