Characterization of black carbon particles generated by a propane-fueled miniature inverted soot generator

2019 ◽  
Vol 135 ◽  
pp. 46-57 ◽  
Author(s):  
Alireza Moallemi ◽  
Mohsen Kazemimanesh ◽  
Joel C. Corbin ◽  
Kevin Thomson ◽  
Greg Smallwood ◽  
...  
2018 ◽  
Vol 18 (9) ◽  
pp. 2301-2317 ◽  
Author(s):  
Honey Dawn Alas ◽  
Thomas Müller ◽  
Wolfram Birmili ◽  
Simonas Kecorius ◽  
Maria Obiminda Cambaliza ◽  
...  

2013 ◽  
Vol 832 ◽  
pp. 767-772 ◽  
Author(s):  
Shoichiro Ikeda ◽  
Shinji Kawasaki ◽  
Akinari Nobumoto ◽  
Hideo Ono ◽  
Shinji Ono ◽  
...  

We have produced nanocarbon suspension in pure water, which is named as Nanocaloid®, by a simple DC electrolysis from a synthetic graphite plates as anodes and SUS plates as cathodes in purified water at room temperature. The amount of carbon nanoparticles was monitored by the conductivity and pH value of the electrolyte solution, and also by a simple gravimetric way after drying the solution. If the current density increases, the diameter of the carbon particles becomes larger and the amount of precipitates becomes also large. It takes about six weeks to obtain about 0.4 wt% carbon suspension solution under the normal electrolysis conditions. Characterization of Nanocaloid®has been conducted to show unique properties and promising epoch-making applications such as solid lubricants for non-oily cutting fluids and conductive agents for reuse of deteriorated Pb-acid batteries. The performance of nanocarbon particles in oil lubricants in addition to the preparation will be reported.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2615 ◽  
Author(s):  
Jeonghoon Lee ◽  
Hans Moosmüller

In this study, a photothermal interferometer was developed, based on a folded-Jamin polarization instrument with refractive-index sensitive configuration, in order to characterize light-absorbing aerosols. The feasibility of our interferometric technique was demonstrated by performing photothermal spectroscopy characterizing spark-generated black carbon particles with atmospherically relevant concentrations and atmospheric aerosols in a metropolitan area. The sensitivity of this interferometric system for both laboratory-generated aerosols and atmospheric aerosols was ~ 1 (μg/m3)/μV, which is sufficient for the monitoring of black carbon aerosol in urban areas.


2019 ◽  
Vol 53 (16) ◽  
pp. 9429-9438 ◽  
Author(s):  
Alex K.Y. Lee ◽  
Laura-Hélèna Rivellini ◽  
Chia-Li Chen ◽  
Jun Liu ◽  
Derek J. Price ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. 1217-1229
Author(s):  
Yuko Matsukawa ◽  
Fabian Linsenmann ◽  
Maximilian Arthur Plass ◽  
George Hasegawa ◽  
Katsuro Hayashi ◽  
...  

Hard carbons are promising candidates for high-capacity anode materials in alkali metal-ion batteries, such as lithium- and sodium-ion batteries. High reversible capacities are often coming along with high irreversible capacity losses during the first cycles, limiting commercial viability. The trade-off to maximize the reversible capacities and simultaneously minimizing irreversible losses can be achieved by tuning the exact architecture of the subnanometric pore system inside the carbon particles. Since the characterization of small pores is nontrivial, we herein employ Kr, N2 and CO2 gas sorption porosimetry, as well as H2O vapor sorption porosimetry, to investigate eight hard carbons. Electrochemical lithium as well as sodium storage tests are compared to the obtained apparent surface areas and pore volumes. H2O, and more importantly CO2, sorption porosimetry turned out to be the preferred methods to evaluate the likelihood for excessive irreversible capacities. The methods are also useful to select the relatively most promising active materials within chemically similar materials. A quantitative relation of porosity descriptors to the obtained capacities remains a scientific challenge.


1993 ◽  
Vol 8 (8) ◽  
pp. 1875-1885 ◽  
Author(s):  
A.W.P. Fung ◽  
Z.H. Wang ◽  
K. Lu ◽  
M.S. Dresselhaus ◽  
R.W. Pekala

Carbon aerogels are a special class of low-density microcellular foams. These materials are composed of interconnected carbon particles with diameters of approximately 10 nm. The temperature dependence of the dc electrical resistivity and magnetic susceptibility (χ) from 4 K to room temperature, magnetoresistance (MR) in a magnetic field up to 15 T, and Raman scattering were measured as a function of aerogel density. While Raman scattering measurements are not sensitive to variations in density, the χ data show that there are more free carriers in samples of higher density. Aerogel samples with different densities all show a negative temperature coefficient of resistivity and a positive MR. The less dense samples exhibit a stronger temperature dependence of resistivity and a stronger field dependence of the MR, indicating that with decreasing density and increasing porosity, charge carriers are more localized. Data analysis precludes variable-range hopping in favor of nearest-neighbor hopping and fluctuation-induced tunneling as the most likely conduction mechanisms for carbon aerogels.


Sign in / Sign up

Export Citation Format

Share Document