scholarly journals Co-application of nitrogen and straw-decomposing microbial inoculant enhanced wheat straw decomposition and rice yield in a paddy soil

2021 ◽  
Vol 4 ◽  
pp. 100134
Author(s):  
Yusef Kianpoor Kalkhajeh ◽  
Zhifeng He ◽  
Xinrun Yang ◽  
Yao Lu ◽  
Jing Zhou ◽  
...  
Author(s):  
Xue Hu ◽  
Hongyi Liu ◽  
Chengyu Xu ◽  
Xiaomin Huang ◽  
Min Jiang ◽  
...  

Few studies have focused on the combined application of digestate and straw and its feasibility in rice production. Therefore, we conducted a two-year field experiment, including six treatments: without nutrients and straw (Control), digestate (D), digestate + fertilizer (DF), digestate + straw (DS), digestate + fertilizer + straw (DFS) and conventional fertilizer + straw (CS), to clarify the responses of rice growth and paddy soil nutrients to different straw and fertilizer combinations. Our results showed that digestate and straw combined application (i.e., treatment DFS) increased rice yield by 2.71 t ha−1 compared with the Control, and digestate combined with straw addition could distribute more nitrogen (N) to rice grains. Our results also showed that the straw decomposition rate at 0 cm depth under DS was 5% to 102% higher than that under CS. Activities of catalase, urease, sucrase and phosphatase at maturity under DS were all higher than that under both Control and CS. In addition, soil organic matter (SOM) and total nitrogen (TN) under DS and DFS were 20~26% and 11~12% higher than that under B and DF respectively, suggesting straw addition could benefit paddy soil quality. Moreover, coupling straw and digestate would contribute to decrease the N content in soil surface water. Overall, our results demonstrated that digestate and straw combined application could maintain rice production and have potential positive paddy environmental effects.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Gabriela Mühlbachová ◽  
Pavel Růžek ◽  
Helena Kusá ◽  
Radek Vavera ◽  
Martin Káš

The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions.


2021 ◽  
Vol 275 ◽  
pp. 116640
Author(s):  
Haijun Sun ◽  
Yu Zhang ◽  
Yiting Yang ◽  
Yudong Chen ◽  
Paramsothy Jeyakumar ◽  
...  

Author(s):  
Jin Liu ◽  
Yangquanwei Zhong ◽  
Xiaoyu Jia ◽  
Weiming Yan ◽  
Jia Cao ◽  
...  

Author(s):  
Mengjie Wu ◽  
Hongyu Liu ◽  
Chunping Yang

Two types of pretreatment categories, namely microwave-assisted alkalization and microwave-assisted acid oxidation, were used to synthesize novel wheat straw adsorbents for the effective removal of Cd(II) in simulated waterlogged paddy soil. A systematic adsorption behavior study, including adsorption kinetics and adsorption isotherms was conducted. Results showed that wheat straw pretreated by microwave-assisted soaking of NaOH and ethanol solution obtained the highest Cd(II) removal efficiency of 96.4% at a reaction temperature of 25 ℃, pH of 7.0, initial Cd(II) concentration of 50 mg/L, and adsorbent/adsorbate ratio of 10 g/L. Sequential extraction experiment was carried out to analyze the changes of different of Cd(II) in soil, the aim of which was to study the mobility of Cd(II) and then evaluate the toxicity that Cd(II) might bring to plants. A 60-day incubation was performed to investigate the dynamic variations of soil pH and dissolved organic carbon content over incubation time. Characterization analyses revealed the morphological changes of wheat straw adsorbents, which suggested that those pretreatment methods were of significance. This study provided an environmentally friendly way to reuse agricultural wastes and remedy Cd(II) contaminated soil.


Author(s):  
M R Setiawati ◽  
P Suryatmana ◽  
Budiasih ◽  
N Sondari ◽  
L Nurlina ◽  
...  

1971 ◽  
Vol 35 (2) ◽  
pp. 269-272 ◽  
Author(s):  
J. H. Smith ◽  
C. L. Douglas

2007 ◽  
Vol 53 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Denny Wiedow ◽  
Christel Baum ◽  
Peter Leinweber

Sign in / Sign up

Export Citation Format

Share Document