A new deeper channel system predicted using seismic attributes in scarab gas field, west delta deep marine concession, Egypt

2021 ◽  
Vol 177 ◽  
pp. 104155
Author(s):  
A. Ghoneimi ◽  
A.E. Farag ◽  
A. Bakry ◽  
M. Nabih
2004 ◽  
Author(s):  
Raúl del Valle‐García ◽  
Fidel Reyes‐Ramos ◽  
Alfredo Trujillo‐Alcántara

2021 ◽  
Vol 40 (2) ◽  
pp. 151a1-151a7
Author(s):  
Adel Othman ◽  
Ahmed Ali ◽  
Mohamed Fathi ◽  
Farouk Metwally

In a complex reservoir with a significant degree of heterogeneity, it is a challenge to characterize the reservoir using different seismic attributes based on available data within certain time constraints. Prestack seismic inversion and amplitude variation with offset are among the techniques that give excellent results, particularly for gas-bearing clastic reservoir delineation because of the remarkable contrast between the latter and the surrounding rocks. Challenges arise when a shortage of seismic or well data presents an obstacle in applying these techniques. A further challenge arises if it is necessary to predict water saturation (Sw) using the seismic data because of the independent nonlinear relationship between Sw and seismic attributes and inversion products. Prediction of Sw is necessary not only for characterizing pay from nonpay reservoirs but also for economic reasons. Therefore, extended elastic impedance has been performed to produce a 3D volume of Sw over the reservoir interval. Then, a 3D sweetness volume and spectral decomposition volumes were used to grasp the geometry of the sand bodies that have been charged with gas in addition to their connectivity. This could help illustrate the different stages in the evolution of the Saffron channel system and the sand bodies distribution, both vertically and spatially, and consequently increase production and decrease development risk.


2014 ◽  
Vol 962-965 ◽  
pp. 604-607
Author(s):  
Xiao Yu Yu ◽  
Yong Yuan ◽  
Jin Liang Zhang ◽  
Yuan Yuan Wang

Reservoir plane features of Changling No.1 gas field is analyzed with multiattribute analysis. Through the production of fine synthetic seismograms, the research area is analyzed by seismic attribute. On the basis of the calibration of synthetic seismograms and interpretation of horizon, accurate corresponding relation between the seismic reflection and geological horizon is established. By means of multiple attribute extraction technology, relatively independent attributes related to oil and gas are selected, and afterwards the analysis of the petrophysical characteristics and the optimization of the seismic attribute are achieved. Finally, through the seismic attributes analysis technology and the horizon slice technology, the favorable areas of gas accumulation are predicted.


2016 ◽  
Vol 4 (1) ◽  
pp. SB1-SB11 ◽  
Author(s):  
Yichuan Wang ◽  
Christoph Georg Eichkitz ◽  
Marcellus Gregor Schreilechner ◽  
Gabor Heinemann ◽  
John C. Davis ◽  
...  

A 3D seismic survey over the Intisar E field in the Ajdabiya Trough of the Sirte Basin, Libya, revealed a channel-like feature in Eocene carbonates that wraps around the pinnacle reef that contains the reservoir. We have used coherence, curvature, and spectral decomposition seismic attributes to determine the morphology and gray-level co-occurrence matrix attributes to define seismic facies within the feature. These indicated that the channel originated by submarine scouring caused by downslope movement of turbidity currents. Erosion was followed by the deposition of successive layers of carbonate debris in the channel. Stratigraphic correlations with the adjacent pinnacle reef revealed that the channel was cut during the late stage of reef growth, and a second channel formed after the Intisar E reef ceased to grow. Differences in seafloor elevation over the reef probably diverted turbidity currents so channels were not cut into the reef, breaching the reservoir. This interpreted geologic history may explain why some pinnacle reefs in the Intisar complex contained giant reservoirs, whereas others were barren.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. B35-B43 ◽  
Author(s):  
Zhiguo Wang ◽  
Jinghuai Gao ◽  
Daxing Wang ◽  
Qiansheng Wei

The Lower Permian Xiashihezi Formation of the Ordos Basin is the largest producer of tight gas sand in China. The controls on tight gas production are many and include a variety of geologic, hydrodynamic, and engineering factors from one well to another throughout the basin. In this study, we considered data from a [Formula: see text] 3D seismic volume and logs from 17 wells to investigate the geologic controls on gas production in the [Formula: see text] member of the Xiashihezi Formation, eastern Sulige gas field, Ordos Basin. Our objective was to determine the potential of applying multiple seismic attributes to identify the higher productivity areas of a tight gas sand reservoir. To achieve this, we used amplitude, complex traces, spectral decomposition, and seismic attenuation attributes derived from the 3D seismic volume to detect gas-bearing sand areas. The results of seismic attribute analysis revealed that no single attribute is correlated to higher productivity areas. The qualitative correlations between attributes and production records reflected that higher productivity areas are associated with seismically definable higher amplitude, more stable phase, tuning frequency, and stronger attenuation features in the study area. Meanwhile, three outlier wells in the seismic attribute analysis provided a reminder of the uncertainty in geologic interpretation. The gas-sand reservoir evaluation results suggested that the Pareto principle helps to enhance the interpretation needed to determine the productivity distribution of [Formula: see text] tight-gas reservoir in the study area.


2007 ◽  
Author(s):  
Erik H. Saenger ◽  
Arnaud Torres ◽  
Susanne Rentsch ◽  
Marc Lambert ◽  
Stefan M. Schmalholz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document